Zimanyi Winter School 6. 12. 2012

REGGAE - Generator for Uniform Filling of LIPS

Ivan Melo, Boris Tomášik, Michal Mereš, Vlado Balek, Vlado Černý

Multiparticle phase space?

e+e-, LEP

Heavy ion, RHIC

LEP: LHC (pp): LHC (Pb Pb): $n \ge 100$

n ≥ 4 n ≥ 5,6,8

Lorentz invariant phase space - LIPS

 $a + b \rightarrow 1 + 2 + 3 \cdots + n$

 $\sigma = const \int |M|^2 \frac{d^3 \mathbf{p}_1}{(2\pi)^3 2E_1} \frac{d^3 \mathbf{p}_2}{(2\pi)^3 2E_2} \cdots \frac{d^3 \mathbf{p}_n}{(2\pi)^3 2E_n} \delta^4(p_a + p_b - p_1 - p_2 - p_3 \cdots - p_n)$

LIPS:
$$\int d\Phi_n = \int \frac{d^3 \mathbf{p}_1}{2\pi)^3 2E_1} \frac{d^3 \mathbf{p}_2}{(2\pi)^3 2E_2} \cdots \frac{d^3 \mathbf{p}_n}{(2\pi)^3 2E_n} \delta^4(p_a + p_b - p_1 - p_2 - p_3 \cdots - p_n)$$

• to calculate σ by Monte Carlo integration

$$\sigma = const \int |M|^2 d\Phi_n$$

• to generate events

Monte Carlo Integration $\sigma = const \int |M|^2 d\Phi_n$

Sample mean method $F_n = (b-a) \langle f \rangle = (b-a) \frac{1}{n} \sum_{i=1}^n f(x_i)$

 x_i have to be uniformly distributed

Event generation $a+b \rightarrow 1+2+3\cdots + n$

- Take event uniformly distributed in Φ_n
- Calculate weight $w = |M|^2$ for this event
- Accept this event with probability w/wmax

GENBOD generator (F. James)

fills LIPS uniformly

Generate events with Genbod

- Generate M_2 , M_3 uniformly within kinematic limits
- Calculate weight w
- Accept M_2 , M_3 with probability w/wmax
- Generate angles, calculate momenta, boost to Lab system

GENBOD vs other generators

GENBOD w/wmax very low Good for n < 30

RAMBO

w/wmax much better, = 1 for massless particles Good for n < 100 relativistic particles

NUPHAZ

w/wmax best so far, = 1 for massless particles Better than RAMBO, relativistic particles REGGAE (Tomášik, Mereš, Melo, Balek, Černý) (REscattering after Genbod GenerAtor of Events) Computer Physics Communications 182 (2011) 2561-2566.

Aim to generate pure phase space events with high multiplicity and efficiency for both relativistic and nonrelativistic particles

- Use Genbod in the 1st step to generate event with any w
- Let the particles in the event collide virtually to reach the most probable configurations in the phase space with $w \rightarrow 1$

Gas in a box

Small w

Large w

For large n \rightarrow Maxwell-Boltzmann with temperature T

12/20

LIPS
LIPS-Boltzmann
$$\int d\Phi_n = \int \frac{d^3 \boldsymbol{p}_n}{(2\pi)^3 2E_n} \cdots \frac{d^3 \boldsymbol{p}_3}{(2\pi)^3 2E_3} \frac{d^3 \boldsymbol{p}_2}{(2\pi)^3 2E_2} \frac{d^3 \boldsymbol{p}_1}{(2\pi)^3 2E_1} \delta^4(p_a + p_b - p_1 - p_2 - p_3 \cdots - p_n)$$
Darwin-Fowler method
$$\rho(E)dE = N\sqrt{E^2 - m^2} \exp\left(-\frac{E}{kT}\right)dE$$

Information entropy $S = -\int_{\Sigma} \rho(\mathbf{p}) \ln \rho(\mathbf{p}) d^{3}\mathbf{p}$

REGGAE vs other generators

numerical integration

$$\sigma = const \int |M|^2 d\Phi_n$$
$$I = \int_{\Phi_n} f(\{p_i\}) d\Phi_n, \qquad \{p_i\} = (p_1, p_2, p_3, \dots, p_n)$$

$$\hat{I} = \left(\frac{1}{N}\sum_{j=1}^{N} f(\{p_i\}_j)\right) \Phi_n$$

$$f_5(p_1, p_2, p_3, p_4, p_5) = \frac{(p_1^2 + p_2^2 + p_3^2)p_1^2}{M^4 + p_4^2 p_5^2}$$

n = 30 particles with mass 1 GeV, $p_a + p_b = (100 \text{ GeV}, 0, 0, 0)$

N	REGGAE	REGGAE	REGGAE	NUPHAZ	RAMBO	wGENBOD
	$N_c = 3$	$N_c = 4$	$N_c = 6$			
10^{4}	13.63	13.41	13.78	12.77	13.23	12.23
10^{5}	13.99	13.52	13.36	13.15	13.21	-
10^{6}	13.84	13.42	13.19	13.06	13.12	-
time	$16 \min$	$20 \min$	$28 \min$	$6 \min$	$11 \min$	300 min

n = 60 particles with mass 1 GeV

	0			
Ν	REGGAE $(N_c = 6)$	NUPHAZ		
10^{4}	0.6339	0.6185		
10^{5}	0.6185	0.6315		
time for 10^5	$6 \min$	$63 \mathrm{min}$		

What next?

REGGAE can fill LIPS uniformly for fixed n and chemical composition

... but can we predict if total CM energy prefers to convert to, say, n=50 or n=60 particles? I.e. generate events with different n?

From LIPS to microcanonical phase space?

• LIPS counts states in the momentum space, these states are asymptotic (infinite volume)

$$\sigma = const \int |M|^2 \frac{d^3 \mathbf{p}_1}{(2\pi)^3 2E_1} \frac{d^3 \mathbf{p}_2}{(2\pi)^3 2E_2} \dots \frac{d^3 \mathbf{p}_n}{(2\pi)^3 2E_n} \delta^4(p_a + p_b - p_1 - p_2 - p_3 \dots - p_n)$$

- Microcanonical counts states both in momentum and configuration space which has finite volume ${\sf V}$

$$\int d\Phi_n = \int \frac{d^3 \mathbf{p}_n}{(2\pi)^3} \cdots \frac{d^3 \mathbf{p}_3}{(2\pi)^3} \frac{d^3 \mathbf{p}_2}{(2\pi)^3} \frac{d^3 \mathbf{p}_1}{(2\pi)^3} \delta^4(p_a + p_b - p_1 - p_2 - p_3 \cdots - p_n) \mathbf{v}^n$$

$$|\mathbf{M}|^2 = 2\mathbf{E}_1 2\mathbf{E}_2 \dots 2\mathbf{E}_n \mathbf{V}^n$$
 19/20

finite V

Described by microcanonical phase space

Question: Molecules colliding in a box give canonical Boltzmann, how is this different from REGGAE collisions which give LIPS-Boltzmann?

Answer: Molecules in a box collide in both momentum and configuration space

Question: Can we adjust REGGAE collisions to get canonical Boltzmann?

Question: If we get canonical Boltzmann, do we also get uniform filling of the microcanonical phase space?

Each 2-body decay evaluated in the CM frame of 2 daughters

Standard Numerical Methods of Integration

GENBOD generator (F. James)

$$\int d\Phi_4 = \int \frac{d^3 \mathbf{p}_4}{(2\pi)^3 2E_4} \frac{d^3 \mathbf{p}_3}{(2\pi)^3 2E_3} \frac{d^3 \mathbf{p}_2}{(2\pi)^3 2E_2} \frac{d^3 \mathbf{p}_1}{(2\pi)^3 2E_1} \delta^4(p_a + p_b - p_1 - p_2 - p_3 - p_4)$$

$$\downarrow$$

$$\int d\Phi_4 = 2^3 \int_{M_{3min}}^{M_{3max}} M_3 R_2(M_4, M_3, m_4) \int_{M_{2min}}^{M_{2max}} M_2 R_2(M_3, M_2, m_3) R_2(M_2, m_1, m_2) dM_2 dM_3$$
where
$$\mathbf{M}_2^2 = (\mathbf{p}_1 + \mathbf{p}_2)^2 \qquad \mathbf{M}_3^2 = (\mathbf{p}_1 + \mathbf{p}_2 + \mathbf{p}_3)^2$$

$$R_2(M_4, M_3, m_4) = \frac{2\pi}{M_4} \sqrt{M_4^2 + \left(\frac{M_3^2 - m_4^2}{M_4}\right)^2 - 2(M_3^2 + m_4^2)}$$

$$m_1 + m_2 + m_3 \leq M_3 \leq M_4 - m_4$$

$$m_1 + m_2 \leq M_2 \leq M_3 - m_3$$

12 variables \rightarrow 2

Pure multiparticle phase space = LIPS kinematics & statistics

Standard methods vs MC

(Error scaling with n)

Number	S			
of dimensions	Rectangular	Trapezoidal	Simpson	Monte Carlo
1	1/n	1/n²	1/n⁴	1/√n
2	1/√n	1/n	1/n²	1/√n
d	_ <u>1</u> n ^{1/d}	_ <u>1</u> n ^{2/d}	_ <u>1</u> n ^{4/d}	1/√n

68

A simple computer simulation of molecular collisions leading to Maxwell distribution

J Ftáčnik, P Lichard and J Pišút

Department of Theoretical Physics, Comenius University, Mlynská dolina, 842 15 Bratislava, Czechoslovakia

Received 4 March 1983, in final form 3 June 1983

Abstract We describe a simple computer program which simulates molecular collisions in two dimensions and leads to Maxwell distribution. The results show that even with 5–10 colliding molecules the velocity distribution is quite close to Maxwell's.

Zusammenfassung Ein einfaches Computerprogramm wird beschrieben, das molekulare Stöße in zwei Dimensionen simuliert und zur Maxwell-Verteilung führt. Die Ergebnisse demonstrieren, daß bereits mit Stößen von 5–10 Molekülen nahezu Maxwell-Geschwindigkeitsverteilung ereicht wird.