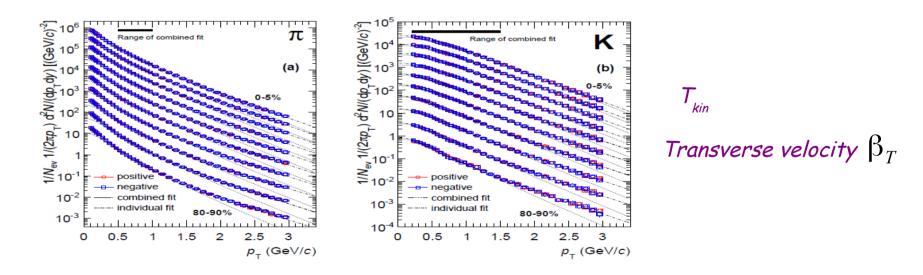
KCSF 2014, Olomouc Sep 18, 2014

Transverse momentum spectra fits in Pb Pb collisions at $\int s_{NN} = 2.76 \text{ TeV}$


Ivan Melo with Boris Tomasik

University of Zilina & Matej Bel University Banska Bystrica

Motivation

Three temperature scenario

- $T_c \sim 175$ MeV phase transition from QGP to hadron gas
- T_c > T > T_{ch} ~ 152 MeV: Hadron gas in local thermal and chemical equilibrium
- T_{ch}~ 152 MeV: chemical freeze-out
- $T_{ch} > T > T_{kin} \sim 90$ MeV: Hadron gas in thermal but not chemical equilibrium
- $T_{kin} \sim 90 \; \text{MeV}$ (?): kinetic freeze-out

ALICE ArXiv:1303.0737[hep-ex] Centrality dependence of pi,K,p production in Pb-Pb at 2.76 TeV $P_{\tau} spectra \ fits \ typically \ do \ not \ include \ resonance \ decays$

We implement resonance decays together with Blast wave model kinetic freeze-out = DRAGON Monte Carlo code

Similar work by W. Florkowski at all: their chemical nonequilibrium model + Krakow model + THERMINATOR explains hadron abundances + spectra

This talk: hadron abundances not yet, just spectra

DRAGON

B. Tomášik, Comp. Phys. Commun. 180 (2009) 1642-1653.

DRAGON is MC code based on Blast Wave model

- + decays of unstable resonances, 277 hadrons included
- + possible fragmentation of fireball is included (not used here)

$$\frac{dN}{dy d^{2} p_{t}} \sim \int d \Sigma_{\mu}(x) p^{\mu} \frac{1}{\exp(\sqrt{p^{2} + m_{i}^{2}}/T) \mp 1} = \int d^{4}x S(x, p)$$

$$S(x,p) d^4x = \delta(\tau - \tau_{\text{fo}}) m_t \cosh(\eta_s - y) G(r) \exp(-\frac{p^{\mu} u_{\mu}}{T}) \tau d\tau d\eta_s r dr d\theta$$

$$\sqrt{t^2-z^2}=\tau_0=const$$

Freeze-out at const proper time
$$\sqrt{t^2-z^2} = \tau_0 = const$$
 Transverse velocity $\beta_T = \eta_f (\frac{r}{R})^n$

R is radius of cylindrical fireball at freeze-out $T_{ch} = 0.152 \; GeV$

 $\mu_{R} = 0.001 \; GeV$ y uniform (-1,1)

$$\mu_{S} = 0 \; GeV$$

 T_{kin} , η_f and n are varied to find the best χ^2 fit

 $(T_{kin} \text{ in steps of 4 MeV}, \eta_f \text{ in steps of 0.01 and n in steps of 0.02})$

Comparison of DRAGON with ALICE ArXiv:1303.0737 [hep-ex]: Centrality dependence of pi,K,p production in Pb-Pb at 2.76 TeV

6 species: $p, \bar{p}, \pi^-, \pi^+, K^-, K^+$

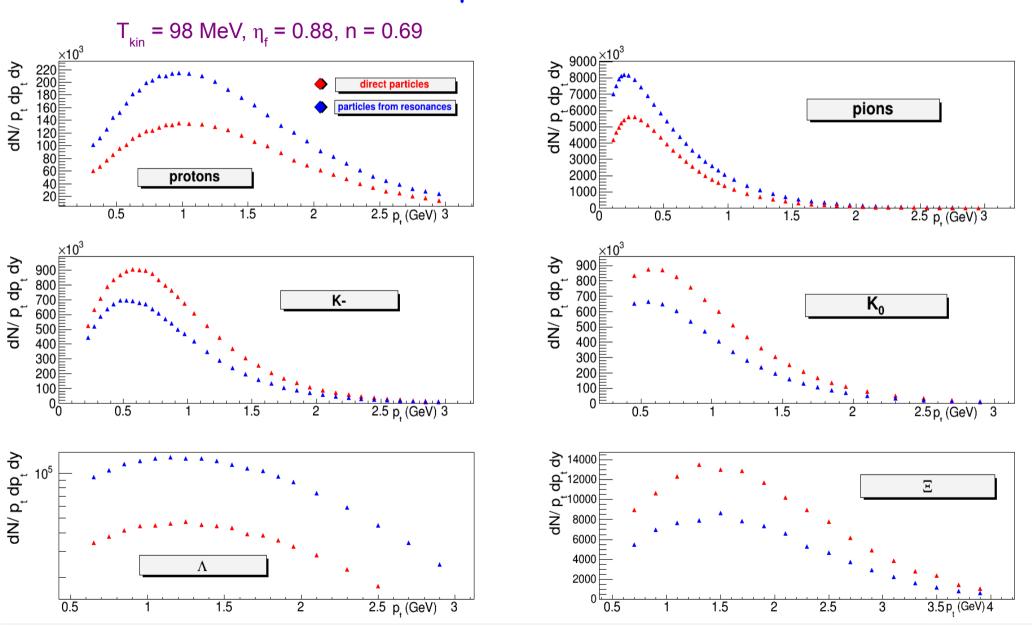
 $0.3 \text{ GeV} < p_T \text{ (protons)}$

 $0.5 \text{ GeV} < p_T \text{ (pions)} < 1 \text{ GeV}$

< 3 GeV

 $0.2~{\rm GeV}~<~p_T~({\rm kaons})~<1.5~{\rm GeV}$

No resonances

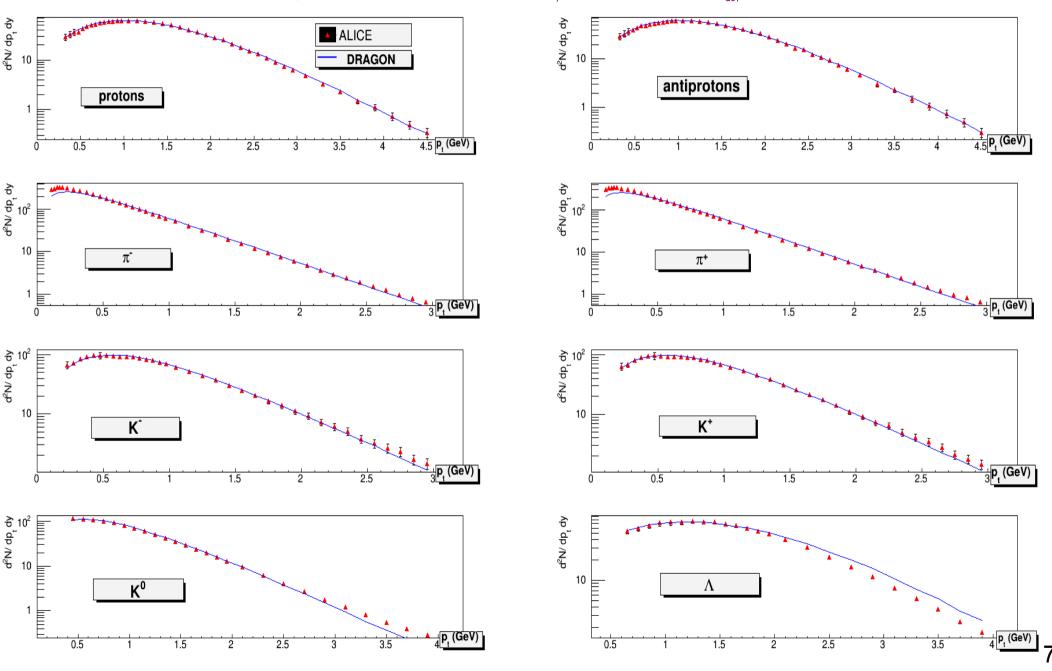

(ALICE)

centrality [%]	$T_{kin} \; (\mathrm{MeV})$	η_f	n	$\langle \beta_T \rangle$	χ^2/N_{dof}
0 - 5	98 (95)	0.88	0.73(0.71)	0.645(0.651)	0.171
5 - 10	98 (97)	0.88	0.73 (0.72)	0.645 (0.646)	0.233
10 - 20	102 (99)	0.87	0.73 (0.74)	0.637 (0.639)	0.223
20 - 30	102 (101)	0.87	0.79(0.78)	0.624 (0.625)	0.238
30 - 40	110 (106)	0.85	0.81 (0.84)	0.605 (0.604)	0.256
40 - 50	110 (112)	0.85	0.97 (0.94)	0.572 (0.574)	0.239
50 - 60	118 (118)	0.82	1.01 (1.10)	$0.545 \ (0.535)$	0.345

Resonances

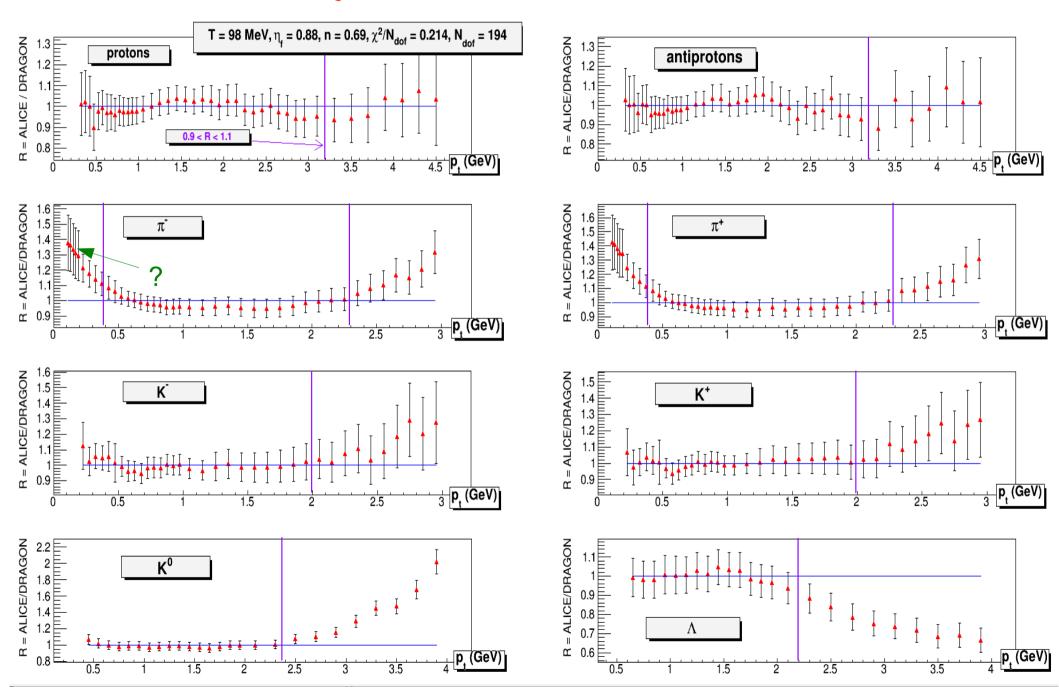
centrality [%]	$T_{kin} \; (\mathrm{MeV})$	η_f	n	$\langle \beta_T \rangle$	χ^2/N_{dof}
0 - 5	82	0.89	0.69	0.662	0.143
5 - 10	94	0.88	0.69	0.654	0.181
10 - 20	90	0.88	0.71	0.649	0.175
20 - 30	98	0.87	0.75	0.633	0.181
30 - 40	102	0.86	0.79	0.616	0.186
40 - 50	118	0.84	0.89	0.581	0.188
50 - 60	126	0.82	1.01	0.545	0.254

$DRAGON P_{T}$ spectra: particles produced directly vs resonance produced

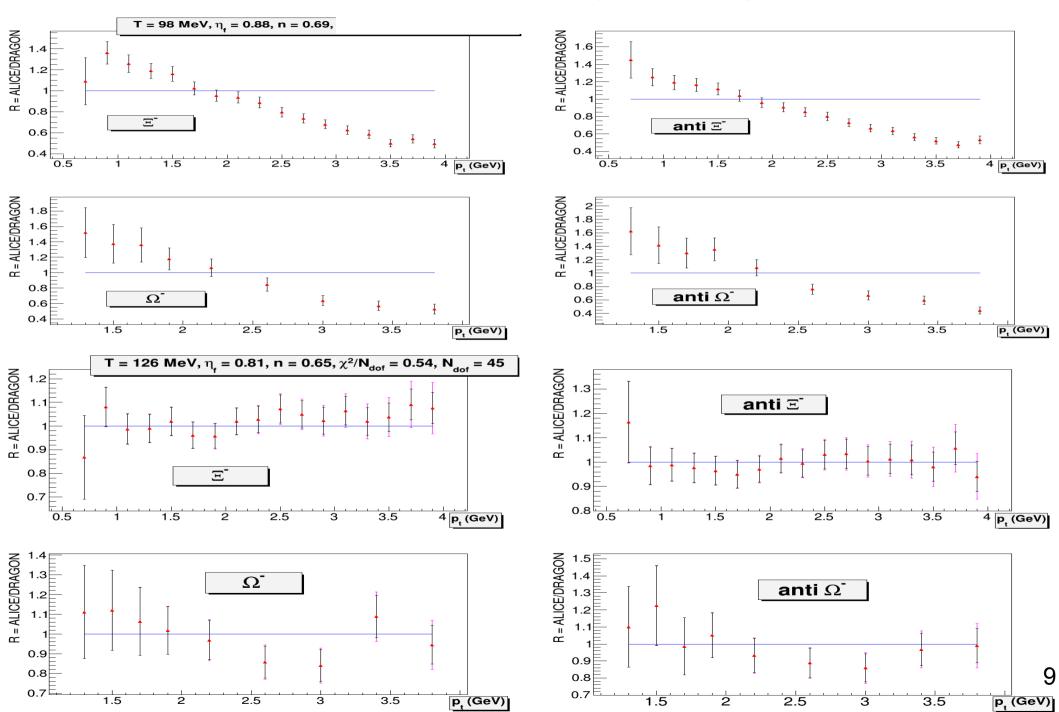


Transverse momentum spectra $p, \bar{p}, \pi^-, \pi^+, K^-, K^+, K^0, \Lambda$

$$p, \bar{p}, \pi^-, \pi^+, K^-, K^+, K^0, \Lambda$$

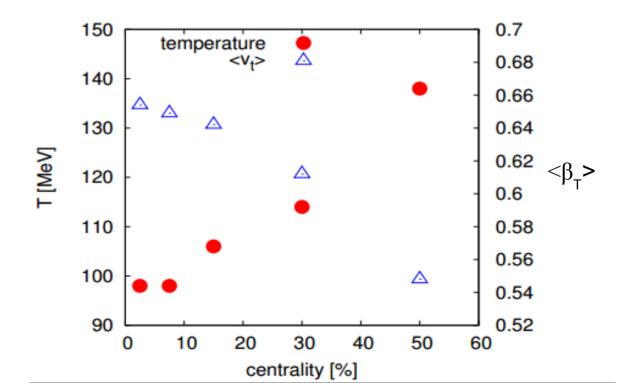

Bins included in the fit $0.9 < R_i = N_i^{exp}/N_i^{MC} < 1.1$

0-5% most central Pb+Pb experimental data, T = 98 MeV, $\eta_f = 0.88$, n = 0.69, $\chi^2/N_{dof} = 0.214$



R = ALICE/DRAGON

0-5% most central Pb+Pb experimental data


$R = ALICE/DRAGON (\Xi \text{ and }\Omega)$

Centrality dependence

8 species $p, \bar{p}, \pi^-, \pi^+, K^-, K^+, K^0, \Lambda$

centrality [%]	$T_{kin} \text{ (MeV)}$	η_f	n	$\langle \beta_T \rangle$	χ^2/N_{dof}	N_{dof}
0 - 5	98	0.88	0.69	0.654	0.214	194
5 - 10	98	0.88	0.71	0.649	0.266	197
10 - 20	106	0.87	0.71	0.642	0.272	210
20 - 40	114	0.86	0.81	0.612	0.294	202
40 - 60	138	0.82	0.99	0.548	0.339	194

Conclusions

- Hadrons receive important contribution from resonance decays
- DRAGON fits to ALICE 0-5% data yield $T_{kin} = 98 \text{ MeV}, \langle \beta_{\uparrow} \rangle = 0.65$ (40-60%: $T_{kin} = 138 \text{ MeV}, \langle \beta_{\uparrow} \rangle = 0.55$)

DRAGON fits to STAR (Au+Au, 62.4 AGeV)
$$T_{kin} = 90 \text{ MeV}, \langle \beta_{\uparrow} \rangle = 0.57$$
)

- Ξ and Ω freeze out earlier T_{kin} = 126 MeV for 0-5%
- Low p_t pion region pion chemical potential? $\frac{dN}{dy d^2 p_t} \sim \int d \Sigma_{\mu}(x) p^{\mu} \frac{1}{\exp(\sqrt{p^2 + m_t^2}/T) \mp 1} = \int d^4 x S(x, p)$

Minimum χ^2

$$\chi^{2}(T_{kin}, \eta_{f}, n) = \sum_{i=1}^{8} \sum_{j_{min}}^{j_{max}} \frac{\left[N_{DRAGON}^{norm}(i, j, T_{kin}, \eta_{f}, n) - N_{ALICE}^{norm}(i, j)\right]^{2}}{\sigma_{ALICE}^{norm}(i, j)^{2}}$$

i runs over 8 species p,anti-p, π -, π +,K-,K+, K_0 and Λ j runs over p_T bins

Each of 8 hadron spectra is normalized independently.

 N_{DRAGON} (N_{ALICE}) gives normalized numbers of hadrons of i-th species in the j-th bin σ is combination of statistical and systematic errors.