A NEW VECTOR RESONANCE PRODUCTION AT FUTURE $e^{+} e^{-}$COLLIDERS. ${ }^{1}$

M. Gintner ${ }^{2}$, I. Melo ${ }^{3}$, B. Trpišová ${ }^{4}$
Physics Dept., University of Žilina, 01026 Žilina, Slovakia

Submitted August 15, 2005

Abstract

We study the possible production, at future $\mathrm{e}^{+} \mathrm{e}^{-}$colliders, of new vector resonances associated with new strong physics that could be responsible for electroweak symmetry breaking. We concentrate on the processes $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{t} \overline{\mathrm{t}}$ and $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \nu_{\mathrm{e}} \bar{\nu}_{\mathrm{e}} \mathrm{t} \overline{\mathrm{t}}$.

PACS: 12.60.Fr, 12.15.Ji

1 Introduction

The mechanism of electroweak symmetry breaking (ESB), responsible for the masses of gauge bosons, and perhaps fermions, is still unknown. ESB gives rise to the massless Goldstone bosons which, through the Higgs mechanism, become longitudinal components of originally massless $\mathrm{W}^{ \pm}$and Z bosons. One possible explanation of the ESB mechanism could be strongly interacting new physics. In models of strong ESB (SESB) new composite resonances are expected to appear to unitarize the WW \rightarrow WW scattering amplitudes that violate a tree-level S-matrix unitarity in the absence of the Standard Model (SM) Higgs boson. In this paper we follow the BESS (Breaking Electroweak Symmetry Strongly) model approach [1] and assume the existence of a vector isovector resonance ρ. We study the $\mathrm{W}_{\mathrm{L}} \mathrm{W}_{\mathrm{L}} \rightarrow \mathrm{tt}$ scattering as a subprocess of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ $\nu_{\mathrm{e}} \bar{\nu}_{\mathrm{e}} \mathrm{t} \overline{\mathrm{t}}$ and the direct production of the vector resonance in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{t} \overline{\mathrm{t}}$. The main appeal of studying these processes lies in the possibility to test the role of the top quark in ESB [2-4].

2 The ρ-resonance model

In the original version of the BESS model [1] it is assumed that all fermion generations of the same chirality couple to the vector resonance with the same strength. This leads to stringent limits on the ρ-to-fermion couplings from the existing measurements of the SM parameters. In our modification [5] of the BESS model we break this universality and assume that only the top quarks and the left-handed bottom quark b_{L} couple directly and possibly strongly to the ρ-resonance. However, the symmetries of the model require b_{L} to couple to ρ with the same

[^0]strength b_{1} as the left-handed top quark t_{L} and, as a consequence, b_{1} is constrained to relatively small values as follows from the low energy measurements of the $\mathrm{Zb} \overline{\mathrm{b}}$ vertex [5]. On the other hand b_{R} field can be chosen not to interact directly with ρ at all which protects the right-handed ρ-to- t_{R} coupling b_{2} from the $\mathrm{Zb} \overline{\mathrm{b}}$ constraint. Our model is based on the non-linear sigma model. The fermion part of the model Lagrangian [5] describes the interaction of the ρ-resonance vector field $\vec{\rho}_{\mu}$ with the third generation of quarks $\psi=(\mathrm{t}, \mathrm{b})$
\[

$$
\begin{align*}
L_{\rho}^{f}= & b_{1} \bar{\psi}_{L} \xi^{\dagger} i \gamma^{\mu}\left[\partial_{\mu}-i g^{\prime \prime} \vec{\rho}_{\mu} \vec{\tau}+i g^{\prime} / 6 B_{\mu}\right] \xi \psi_{L} \tag{1}\\
& +b_{2} \bar{\psi}_{R} P \xi i \gamma^{\mu}\left[\partial_{\mu}-i g^{\prime \prime} \vec{\rho}_{\mu} \vec{\tau}+i g^{\prime} / 6 B_{\mu}\right] \xi^{\dagger} P \psi_{R}-\left(\bar{\psi}_{L} U^{\dagger} M \psi_{R}+h . c .\right) \\
& -\lambda_{1} \bar{\psi}_{L} i \gamma^{\mu}\left(\xi^{\dagger} \mathcal{A}_{\mu} \xi\right) \psi_{L}+\lambda_{2} \bar{\psi}_{R} P i \gamma^{\mu}\left(\xi \mathcal{A}_{\mu} \xi^{\dagger}\right) P \psi_{R}
\end{align*}
$$
\]

where $g^{\prime \prime}, b_{1,2}, \lambda_{1,2}$ are free parameters, $M=\operatorname{diag}\left(m_{t}, m_{b}\right)$ and $P=\operatorname{diag}(1,0)$. The Goldstone bosons triplet $\vec{\pi}$ enters L_{ρ}^{f} through $\xi=\exp \left(i \pi_{k} \tau_{k} / v\right), U=\xi \xi$ and $\mathcal{A}_{\mu}=\xi^{\dagger}\left(D_{\mu} U\right) \xi^{\dagger} / 2$. The relevant parts of the effective chiral Lagrangian can be cast into a very simple form

$$
\begin{equation*}
L=i g_{\pi} M_{\rho} / v\left(\pi^{-} \partial^{\mu} \pi^{+}-\pi^{+} \partial^{\mu} \pi^{-}\right) \rho_{\mu}^{0}+g_{V} \overline{\mathrm{t}} \gamma^{\mu} \mathrm{t} \rho_{\mu}^{0}+g_{A} \overline{\mathrm{t}} \gamma^{\mu} \gamma^{5} \mathrm{t} \rho_{\mu}^{0} \tag{2}
\end{equation*}
$$

where $g_{\pi}=M_{\rho} /\left(2 v g^{\prime \prime}\right), g_{V}=g^{\prime \prime} b_{2} /\left(4\left(1+b_{2}\right)\right)+\mathcal{O}\left(\left(g / g^{\prime \prime}\right)^{2}\right)$ are coupling constants of $\rho W_{L} W_{L}$ and $\rho t \bar{t}$ interactions. Partial wave unitarity limits for $M_{\rho}=700 \mathrm{GeV}^{5}$ are $g_{\pi} \leq 1.75$ and $g_{V} \leq 1.7$. There are six new parameters $-g^{\prime \prime}, b_{1}, b_{2}, \lambda_{1}, \lambda_{2}$ and the ρ mass, M_{ρ}. We do not have any experimental constraints on M_{ρ} - the theoretical expectation is around $1-3 \mathrm{TeV}$. We do have, however, constraints on $g^{\prime \prime}, b_{1}, b_{2}$ and λ_{1}, λ_{2}. These are due to the corrections that $g^{\prime \prime}, b_{1}, b_{2}, \lambda_{1}, \lambda_{2}$ induce in the SM couplings of the Z and W to fermions at low energies (~ 90 $\mathrm{GeV})$. The constraints are $g^{\prime \prime} \gtrsim 10,\left|b_{1}-\lambda_{1}\right| \lesssim 0.01$, and $-0.03 \lesssim b_{2}-\lambda_{2} \lesssim 0.04$. Below we assume $b_{1}=\lambda_{1}=0$. Our results are almost independent of λ_{2}, leaving $M_{\rho}, g^{\prime \prime}$ and b_{2} as free parameters.

3 Signal and background analysis

3.1 Process $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \nu_{\mathrm{e}} \bar{\nu}_{\mathrm{e}} \mathbf{t} \overline{\mathrm{t}}$

In our calculations of the cross-sections we used two programs - CompHEP and Pythia. As an example we give the total cross-section for the signal process with parameters $M_{\rho}=700 \mathrm{GeV}$, $\Gamma_{\rho}=12.5 \mathrm{GeV}, b_{2}=0.08, g^{\prime \prime}=20$, calculated with no cuts: for three different energies of collision, $\sqrt{s}=0.8,1.0,1.5 \mathrm{TeV}$, we get $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \nu_{\mathrm{e}} \overline{\mathrm{e}}_{\mathrm{e}} \mathrm{t} \overline{\mathrm{t}}\right)=0.66,1.16,3.33 \mathrm{fb}$, respectively.

We calculated the cross-sections of two major background processes: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{tt} \gamma$ and $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{t} \bar{t}$ (Pythia). The irreducible background is represented by the "No resonance" model (CompHEP). At the energy $\sqrt{s}=0.8 \mathrm{TeV}$ we imposed the following set of cuts

$$
\begin{align*}
& 500<m_{\mathrm{t} \overline{\mathrm{t}}}<750 \mathrm{GeV},\left|\cos \theta_{\mathrm{t}, \overline{\mathrm{t}}}\right|<0.8, p_{T}(\mathrm{t} \overline{\mathrm{t}})>15 \mathrm{GeV}, M_{\nu \bar{\nu}}>50 \mathrm{GeV}, \tag{3}\\
& p_{T}(\mathrm{t}), p_{T}(\overline{\mathrm{t}})>20 \mathrm{GeV}, E_{\text {miss }}>90 \mathrm{GeV},\left|\cos \theta_{\text {pmiss }}\right|<0.96
\end{align*}
$$

The total background was reduced from 301.6 fb to 0.13 fb and the signal decreased from 0.66 fb down to 0.2 fb . For the collision energy $\sqrt{s}=1 \mathrm{TeV}$ we set the same cuts as (3) except

$$
\begin{equation*}
500<m_{\mathrm{tt}}<900 \mathrm{GeV}, 150 \mathrm{GeV}<M_{\nu \bar{\nu}}, 100 \mathrm{GeV}<E_{\text {miss }} \tag{4}
\end{equation*}
$$

[^1]

Fig. 1. Sensitivity contours (see Eq. (5)) in the $g^{\prime \prime}-b_{2}$ parametric space at the energy of 0.8 and 1 TeV and the integrated luminosity of $200 \mathrm{fb}^{-1}$. The mass of the ρ-resonance is 0.7 TeV . The cuts (3) and (4) were used, respectively, except that the first cut in both cases was changed to $670<m_{\mathrm{t} \overline{\mathrm{t}}}<730 \mathrm{GeV}$. The values of R are shown on the contours. The dashed lines are low-energy limits. The allowed regions are in the lower right corner.

The total background was reduced from 207.3 fb to 0.035 fb while the signal dropped from 1.16 fb down to 0.16 fb . Note that the variable $\theta_{\text {pmiss }}$ in (3) and (4) stands for the missing momentum angle.

The statistical sensitivity of the process to distinguish between the model with the vector resonance and "no-resonance" model (backgrounds included) is given by the following relation

$$
\begin{equation*}
R=\frac{\mid N(\rho)-N(\text { no-resonance }) \mid}{\sqrt{N(\mathrm{t} \overline{\mathrm{t}}} \gamma+\mathrm{e}^{+} \mathrm{e}^{-\mathrm{t} \overline{\mathrm{t}})}+N(\text { no-resonance })}, \tag{5}
\end{equation*}
$$

where N denotes the number of events. In Fig. 1 we show R contours in the $g^{\prime \prime}-b_{2}$ parametric space at the energy of 0.8 TeV and 1 TeV . The calculation does not include reconstruction efficiences and detector effects.

3.2 Process $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{t} \bar{t}$

This process shows surprisingly good sensitivity to the presence of the ρ-resonance. While we expect ρ to couple strongly to the top quark and not to the electron, it turns out that the latter coupling (induced through ρ mixing with photon and Z-boson) is large enough to generate clear peak rising above continuum background. In Fig 2 we show the total cross-sections in the region around the peaks of the vector resonances with a) $M_{\rho}=700 \mathrm{GeV}$ and b) $M_{\rho}=1500 \mathrm{GeV}$. The calculation was performed without cuts. Note the $R=5$ line.

Fig. 2. The total cross-section as a function of CMS energy for a) $\left.M_{\rho}=700 \mathrm{GeV}, \mathbf{b}\right) M_{\rho}=1500$ GeV . The solid curves represent the calculation without/with initial state radiation (ISR) and beamstrahlung (BS) corrections for a resonance with $b_{2}=0.08, g^{\prime \prime}=20$. The dotted line (narrow peak) corresponds to a resonance with $b_{2}=0.003, g^{\prime \prime}=20$ (ISR \& BS included). The dash-dotted straight line represents irreducible (continuum) background with ISR \& BS. The dashed line shows the boundary at which the statistical significance R equals 5 assuming the scanning luminosity $L_{\text {scan }}=1 \mathrm{fb}^{-1}$.

4 Conclusions

We have studied a new vector resonance from SESB in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \nu_{\mathrm{e}} \bar{\nu}_{\mathrm{e}} \mathrm{t} \overline{\mathrm{t}}$ and $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{t} \overline{\mathrm{t}}$ at future $\mathrm{e}^{+} \mathrm{e}^{-}$colliders operating at 1 TeV energy scale. The first process contains $\mathrm{W}_{\mathrm{L}} \mathrm{W}_{\mathrm{L}} \rightarrow \rho \rightarrow \mathrm{t} \overline{\mathrm{t}}$ scattering as its subprocess and is potentially sensitive to the $\rho-\mathrm{t} \overline{\mathrm{t}}$ coupling g_{V}. The size of this coupling could hint on the mechanism of the top mass generation. We found (working at the level of undecayed top quarks) that statistical significance R is as large as 8 for $M_{\rho}=700 \mathrm{GeV}$ for certain regions of the parameter space allowed by the low energy constraints at 1 TeV collider. While this process is generally sensitive to vector resonances which couple to the top quark and W boson, the second process, $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{t} \overline{\mathrm{t}}$ is sensitive only if the vector resonance coupling to the electron is not negligible. Our results show that it should be possible to discover ρ resonances with $b_{2}=0.08$ if the scanning luminosity is $1 \mathrm{fb}^{-1}$.

References

[1] R. Casalbuoni et al.: Phys.Lett. B155 (1985) 95 ; D. Dominici: Riv.Nuovo Cim. 20 (1997) 1 ; R. Casalbuoni et al.: Phys.Lett. B258 (1991) 161
[2] T.L.Barklow et al. [hep-ph/9704217], and references therein; S.Haywood et al. [hep-ph/0003275]; C. Hill and E. H. Simmons: Phys.Rept. 381 (2003) 235 ; Erratum ibid: 390 (2004) 553 ;
[3] E.R.Morales, M.E.Peskin [hep-ph/9909383];
[4] S. Godfrey, S-h Zhu: Phys.Rew. D72 (2005) 074011 [hep-ph/0412261];
[5] M. Gintner, I. Melo: Acta Phys. Slov. 51 (2001) 139

[^0]: ${ }^{1}$ Presented at the 15-th Conference of Czech and Slovak Physicists, Košice, Slovakia, September 5-8, 2005
 ${ }^{2}$ E-mail address: gintner@fyzika.utc.sk
 ${ }^{3}$ E-mail address: melo@fyzika.utc.sk
 ${ }^{4}$ E-mail address: trpisova@fyzika.utc.sk

[^1]: ${ }^{5}$ Throughout the paper masses are given in $\mathrm{GeV} / \mathrm{c}^{2}$ or $\mathrm{TeV} / \mathrm{c}^{2}$ and momenta in $\mathrm{GeV} / \mathrm{c}$, where we put $\mathrm{c}=1$.

