WPCF 2014, Gyongyos Aug 28, 2014

Freeze-out state from analysis of transverse momentum spectra in Pb Pb collisions at $\sqrt{s_{_{NN}}} = 2.76$ TeV

Ivan Melo with Boris Tomasik University of Zilina & Matej Bel University Banska Bystrica

Motivation

P_{τ} spectra fits typically do not include resonance decays

See e.g. ALICE Collaboration ArXiv:1303.0737[hep-ex] Centrality dependence of pi,K,p production in Pb-Pb at 2.76 TeV

By including resonances we go in the direction of talk by W. Florkowski on Tuesday: their chemical nonequilibrium with single temperature + Krakow model + THERMINATOR explains hadron abundances + spectra

This talk: hadron abundances not yet, just spectra

Two (three) temperature scenario

T_{critical} ≥ T_{chemical} ≥ T_{kinetic}

Blast wave model kinetic freeze-out implemented in DRAGON

B. Tomášik, Comp. Phys. Commun. 180 (2009) 1642-1653.

DRAGON is MC code based on Blast Wave model + decays of unstable resonances, 277 hadrons included + possible fragmentation of fireball is included (not used here)

$$\frac{dN}{dy d^2 p_t} \sim \int d\Sigma_{\mu}(x) p^{\mu} \frac{1}{\exp(\sqrt{p^2 + m_t^2}/T) \mp 1} = \int d^4 x S(x, p)$$

$$S(x, p) d^4 x = \delta(\tau - \tau_{\rm fo}) m_t \cosh(\eta_s - y) G(r) \exp(-\frac{p^{\mu} u_{\mu}}{T}) \tau d\tau d\eta_s r dr d\theta$$

Freeze-out at const proper time

 $\sqrt{t^2 - z^2} = \tau_0 = const$ Transverse velocity $\beta_T = \eta_f \left(\frac{r}{R}\right)$

R is radius of cylindrical fireball at freeze-out

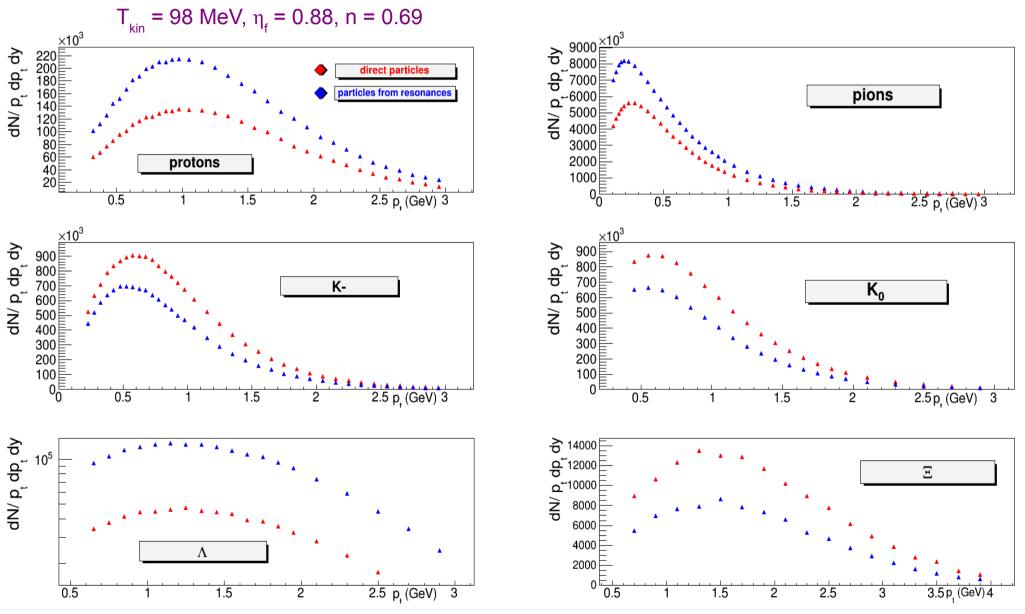
 $T_{ch} = 0.152 \; GeV$ $\mu_{R} = 0.001 \; GeV$ y uniform (-1,1) $\mu_{\rm s} = 0 \; GeV$ T_{kin} , η_f and n are varied to find the best χ^2 fit $(T_{kin} \text{ in steps of 4 MeV}, \eta_f \text{ in steps of 0.01 and n in steps of 0.02})$

Comparison of DRAGON with ALICE ArXiv:1303.0737 [hep-ex]: Centrality dependence of pi,K,p production in Pb-Pb at 2.76 TeV

6 species:
$$p, \bar{p}, \pi^-, \pi^+, K^-, K^+$$

$0.3~{\rm GeV}~<$	p_T (protons)	$< 3~{ m GeV}$
$0.5~{\rm GeV}~<$	p_T (pions)	$< 1~{ m GeV}$
$0.2~{\rm GeV}~<$	p_T (kaons)	$< 1.5~{ m GeV}$

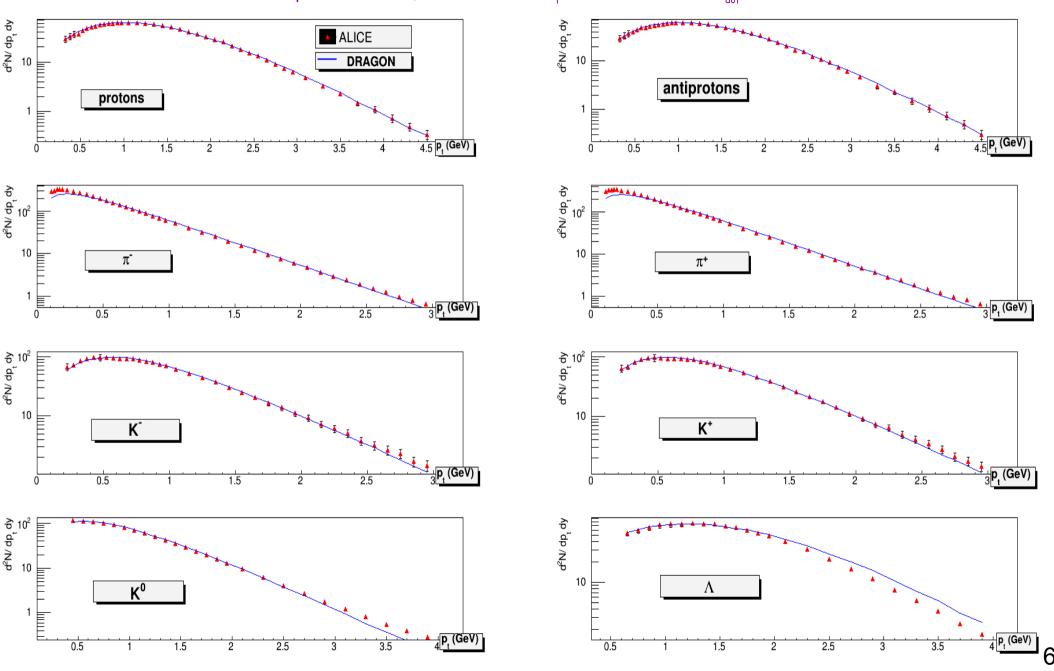
No resonances


(ALICE)

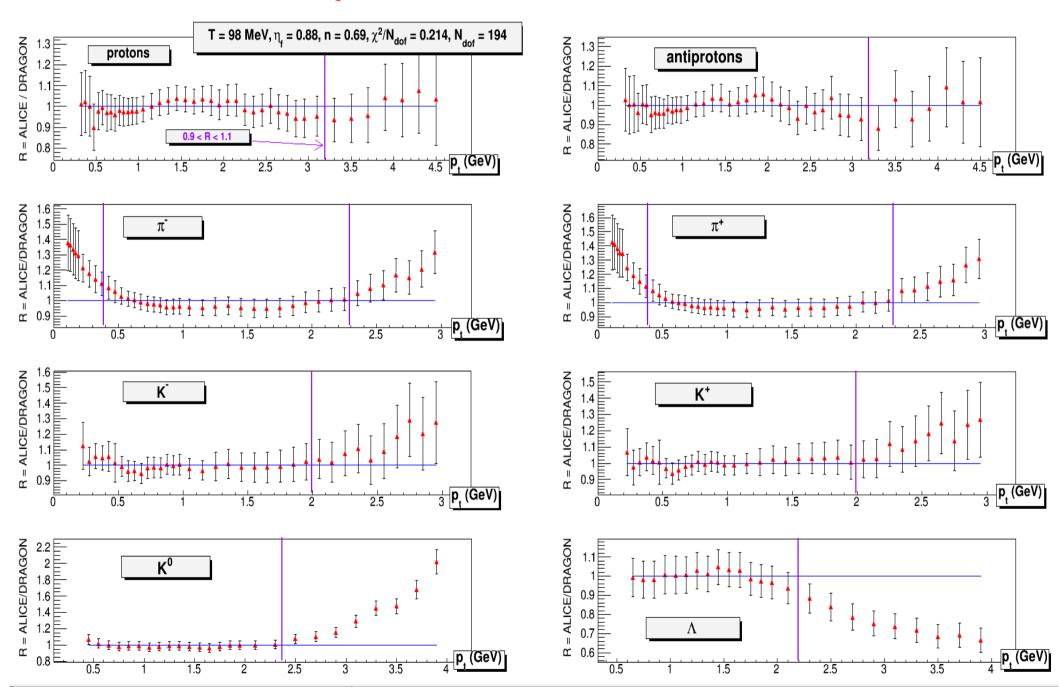
centrality [%]	T_{kin} (MeV)	η_f	n	$\langle \beta_T \rangle$	χ^2/N_{dof}
0 - 5	98(95)	0.88	0.73(0.71)	0.645(0.651)	0.171
5 - 10	98(97)	0.88	0.73(0.72)	$0.645 \ (0.646)$	0.233
10 - 20	102 (99)	0.87	0.73(0.74)	0.637(0.639)	0.223
20 - 30	102(101)	0.87	0.79(0.78)	$0.624 \ (0.625)$	0.238
30 - 40	110(106)	0.85	0.81(0.84)	0.605(0.604)	0.256
40 - 50	110 (112)	0.85	0.97(0.94)	0.572(0.574)	0.239
50 - 60	118 (118)	0.82	1.01(1.10)	$0.545 \ (0.535)$	0.345

Resonances

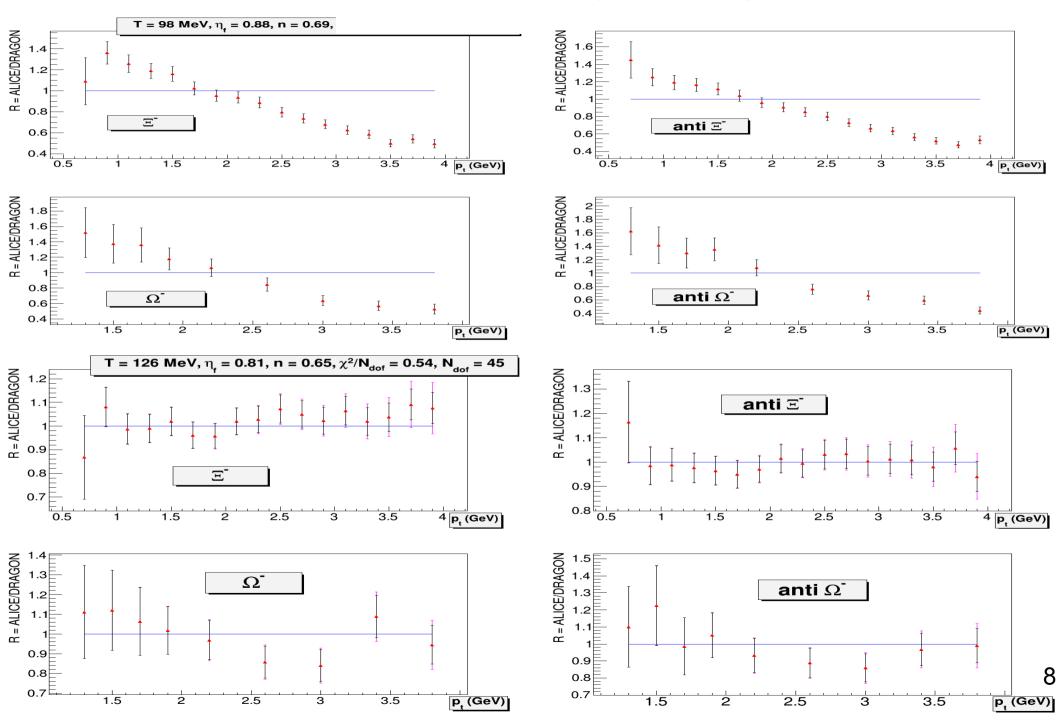
centrality [%]	T_{kin} (MeV)	η_f	n	$\langle \beta_T \rangle$	χ^2/N_{dof}
0 - 5	82	0.89	0.69	0.662	0.143
5 - 10	94	0.88	0.69	0.654	0.181
10 - 20	90	0.88	0.71	0.649	0.175
20 - 30	98	0.87	0.75	0.633	0.181
30 - 40	102	0.86	0.79	0.616	0.186
40 - 50	118	0.84	0.89	0.581	0.188
50 - 60	126	0.82	1.01	0.545	0.254


DRAGON P_T spectra: particles produced directly vs resonance produced

Transverse momentum spectra $p, \bar{p}, \pi^-, \pi^+, K^-, K^+, K^0, \Lambda$

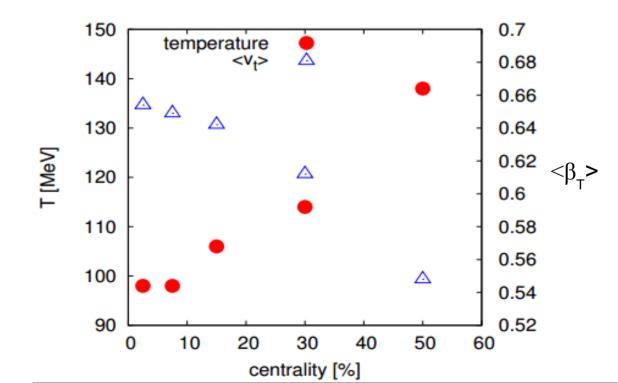

Bins included in the fit $0.9 < R_i = N_i^{exp}/N_i^{MC} < 1.1$

0-5% most central Pb+Pb experimental data, T = 98 MeV, $n_f = 0.88$, n = 0.69, $\chi^2/N_{dof} = 0.214$



R = ALICE/DRAGON

0-5% most central Pb+Pb experimental data


$R = ALICE/DRAGON (\Xi and \Omega)$

Centrality dependence

8 species $p, \bar{p}, \pi^-, \pi^+, K^-, K^+, K^0, \Lambda$

centrality [%]	T_{kin} (MeV)	η_f	n	$\langle \beta_T \rangle$	χ^2/N_{dof}	N_{dof}
0 - 5	98	0.88	0.69	0.654	0.214	194
5 - 10	98	0.88	0.71	0.649	0.266	197
10 - 20	106	0.87	0.71	0.642	0.272	210
20 - 40	114	0.86	0.81	0.612	0.294	202
40 - 60	138	0.82	0.99	0.548	0.339	194

Conclusions

- Hadrons receive important contribution from resonance decays
- DRAGON fits to ALICE 0-5% data yield T_{kin} = 98 MeV, <β_T> = 0.65 (for 40-60%: T_{kin} = 138 MeV, <β_T> = 0.55)
- Ξ and Ω freeze out earlier T_{kin} = 126 MeV for 0-5%
- Low p₊ pion region pion chemical potential?

$$\frac{dN}{dy d^2 p_t} \sim \int d\Sigma_{\mu}(x) p^{\mu} \frac{1}{\exp(\sqrt{p^2 + m_i^2}/T) \mp 1} = \int d^4 x S(x, p)$$

Minimum $\chi 2$

$$\chi^{2}(T_{kin}, \eta_{f}, n) = \sum_{i=1}^{8} \sum_{j_{min}}^{j_{max}} \frac{[N_{DRAGON}^{norm}(i, j, T_{kin}, \eta_{f}, n) - N_{ALICE}^{norm}(i, j)]^{2}}{\sigma_{ALICE}^{norm}(i, j)^{2}}$$

i runs over 8 species p, ant *i*-p, π -, π +, K-, K+, K_o and Λ *j* runs over p_T bins

Each of 8 hadron spectra is normalized independently.

N_{DRAGON} (N_{ALICE}) gives normalized numbers of hadrons of i-th species in the j-th bin

 σ is combination of statistical and systematic errors.