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INTRODUCTION

The recent analyses of the LHC data strongly sug-
gest that the observed 125-GeV boson is a Higgs-
like particle related to the mechanism of electroweak
symmetry breaking (ESB). Nevertheless, the question
about the nature of ESB remains unsolved. From a the-
oretical point of view, the alternatives to the SM Higgs
get some preference due to the naturalness argument.
The extensions of the SM still in the game include the-
ories where electroweak symmetry is broken by new
strong interactions, like in Technicolor

On the theoretical front, activities in the modeling,
parameterizing, and fitting the 125-GeV Higgs-like bo-
son sector of candidate theories are taking place nowa-
days. Effectively, the Higgs-like boson can be described
as a stand alone singlet added to the non-linear sigma
model of the Nambu-Goldstone bosons. Alternatively,
the Higgs-like scalar can be made a member of a mul-
tiplet of the symmetry of the strong sector [1].

It seems reasonable to expect that beside the com-
posite scalar the new strong interactions would also
produce bound states of higher spins. In this paper, we
consider the effective Lagrangian where the 125-GeV
scalar resonance is complemented with the SU(2)L+R

triplet of vector resonances. Theories that can be re-
lated to our effective description include 2-site decon-
structed models, purely 4-dimensional multi-site mod-
els, and composite Higgs models. All these models pre-
dict the existence of resonances of higher spins, includ-
ing the vectorial ones. The idea of partial composite-
ness that appears in some of these models could justify
the exclusivity of the third quark direct couplings to
the vector resonances in our effective Lagrangian.

We have introduced the SU(2)L+R triplet vector
resonance to the usual SU(2)L×SU(2)R → SU(2)L+R

effective Lagrangian with the non-linearly trans-
forming SU(2)L+R triplet of the would-be Nambu-
Goldstone bosons augmented with the SU(2)L+R sin-
glet scalar resonance [2, 3, 4]. The vector triplet is
brought in as a gauge field via the hidden local symme-
try (HLS) approach [5]. Beside the scalar singlet and
the vector triplet, the effective Lagrangian is built out
of the SM fields only.

The vector resonance couples directly to the third
quark generation only. The interactions of the left and
right fields are proportional to bL and bR, respectively.
In addition, there is a free parameter p which disen-
tangles the right bottom coupling from the right top
coupling. The assumption that the vector resonance in-
teraction with the right bottom quark is weaker than
the interaction with the right top quark corresponds
to the expectation that 0 ≤ p ≤ 1. While p = 1 leaves
the interactions equal, the p = 0 turns off the right
bottom quark interaction completely and maximally

breaks the SU(2)R part of the Lagrangian symmetry
down to U(1)R3. In addition the symmetry of the La-
grangian admits non-SM interaction of the fermions
with the EW gauge bosons that we include under the
assumption that they apply to the third quark gener-
ation only. These interactions are proportional to the
free parameters λL and λR. In the unitary (physical)
gauge the new physics part of the (t, b) Lagrangian as-
sumes the form

LNP
(t,b) = ibLψ̄L( /V − /W )ψL

+ibRψ̄RP ( /V − /B
R3

)PψR

+iλLψ̄L( /W − /B
R3

)ψL

+iλRψ̄RP ( /W − /B
R3

)PψR (1)

where /W µ = ig /W
a
µτ

a, /B
R3

= ig′ /Bτ3, /V µ = i g
′′

2
/V
a
µτ

a,
and the matrix P = diag(1, p) disentangles the di-
rect interaction of the vector triplet with the right
top quark from the interaction with the right bottom
quark.

The direct LHC bottom limits on the vector res-
onance masses are strongly model dependent. In gen-
eral, considering the partial compositeness for the third
quark generation admits the limits to be as low as 300
GeV, or even less, for certain values of the Higgs-like
boson couplings [6]. The most restrictive bottom limit
is obtained when no compositeness of the SM fermions
is assumed; it is slightly below 1 TeV.

In this paper, we present the best fits of the vec-
tor resonance free parameters to the existing data. In
setting constraints on the vector resonance couplings
the published LHC analyses cannot compete with the
low-energy (LE) measurements yet. Therefore we focus
on the LE data when calculating the limits.

RESULTS AND CONCLUSIONS

If there is the new vector resonance triplet we can
learn about its parameters even before its discovery
by measuring deviations of the known particle cou-
plings from their SM values. To confront the reso-
nance free parameters with the LE measurements we
have derived the LE Lagrangian by integrating out the
vector resonance triplet the assumed mass of which
is O(103) GeV. In the process, the number of the
free parameters has been reduced. In particular, the
low-energy observables depend on the combinations
∆L = bL−2λL and ∆R = bR+2λR of b and λ param-
eters only.

The experimental limits for the LE parameters g′′,
p, ∆L, and ∆R have been derived by fitting the low-
energy (pseudo)observables ϵ1, ϵ2, ϵ3, Γb(Z → bb̄),
and BR(B → Xsγ). As far as the scalar parameters
are concerned the direct LHC measurements restrict
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them to the vicinity of their SM values. Under the as-
sumptions inspired by the composite Higgs scenario
when the Higgs couples equally to all fermions and the
NLO couplings are set to zero the parameter a (defined
in [3, 4], parameterizing the coupling of the scalar res-
onance to the electroweak gauge bosons and the vector
resonance) is restricted by the combination of the most
recent LHC data and the electroweak precision observ-
ables from SLC, LEP-1, LEP-2, and the Tevatron to
be within 10% of the SM value at 95% CL [7]. Our full-
scale analysis resulting in the LE limits for the vector
resonance parameters under simplifying assumptions
that the scalar resonance couples as the SM Higgs bo-
son can be found in [4].

Here we report the best fits when the parameter a
differs from its SM value a = 1. In Fig. 1 we show the
best-fit values of ∆L and ∆R and the iso-backing con-
tours for the preselected values of g′′ and p. The grid
of the dot-dashed and dashed lines indicates the best
values of ∆L and ∆R, respectively. The numbers at-
tached to the grid lines are 103 times the actual values
represented by the lines. In the figure, the graphs for
three different values of a are shown, a = 0.9, 1.0, and
1.1. The cut-off scale Λ = 1 TeV for all graphs. The
vertical solid line in the graphs indicates the naive per-
turbativity limit for g′′: g′′/2 ≤ 4π.

We can see that the best values of g′′ read 36,
29, and 25, and the best values of p read 0.14, 0.21,
and 0.42 when a = 0.9, 1.0, and 1.1, respectively.
The corresponding best values of (∆L,∆R) are about
(−0.003, 0.023), (−0.004, 0.016), and (−0.004, 0.008).
Recall that the direct vector resonance coupling to the
left top-bottom quark doublet is proportional to bLg

′′

and the direct coupling to the right top quark is pro-
portional to bRg

′′. The couplings of the right bottom
quark to the charged and neutral vector resonances are
diminished by p and p2, respectively. The best-fit value
of p found in our analysis seems to support the assump-
tion of some models of partial fermion compositeness
that the new strong physics resonances couple stronger
to the right top quark than to the right bottom quark.
Unless the vector resonance is discovered directly fur-
ther progress in the LHC measurements of the Ztt and
Wtb vertices is needed to improve limits on this and
other parameters of the studied effective Lagrangian.
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Fig. 1. The best-fit values of ∆L (dot-dashed) and ∆R
(dashed) and the iso-backing contours (solid) for the
preselected values of g′′ and p. (top: a = 0.9, middle:
a = 1.0, bottom: a = 1.1.) More information about the

graphs can be found in the text.


