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Abstract The effective Lagrangian with scalar and vector
resonances that might result from new strong physics be-
yond the SM is formulated and studied. In particular, the
scalar resonance representing the recently discovered 125-
GeV boson is complemented with the SU(2)L+R triplet of
hypothetical vector resonances. Motivated by experimental
and theoretical considerations, the vector resonance is al-
lowed to couple directly to the third quark generation only.
The coupling is chiral-dependent and the interaction of the
right top quark can differ from that of the right bottom
quark. To estimate the applicability range of the effective
Lagrangian the unitarity of the gauge boson scattering am-
plitudes is analyzed. The experimental fits and limits on the
free parameters of the vector resonance triplet are investi-
gated.

1 Introduction

The ATLAS and CMS announcements of the 125-GeV bo-
son discovery [1, 2] have provided major contribution to-
wards finding the solution of the puzzle about the mech-
anism of electroweak symmetry breaking (ESB). The re-
cent data revelations and analyses [3] strongly suggest that
the observed 125-GeV boson is a Higgs-like particle with
a tight relationship with the ESB mechanism. Nevertheless,
the question about the true nature of the mechanism, and
thus about physics beyond the Standard model (SM), re-
mains unsolved. While the observed properties of the dis-
covered boson are compatible with the SM Higgs boson hy-
pothesis [4–10], at the same time they are compatible with
some alternative extensions of the SM [11–14].
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From a theoretical point of view, the alternatives to the
SM Higgs get some preferences due to the naturalness argu-
ment. The extensions of the SM still in the game include the-
ories where electroweak symmetry is broken by new strong
interactions, like in Technicolor [15–28].

Most studies aimed at the evaluation of the impact of the
new discovery on the alternatives theories assume the bo-
son has a spin zero. This assumption gets a growing exper-
imental support as more LHC data is being processed. Of
course, at the same time it disfavors strongly-interacting the-
ories without a light scalar field and calls for theories with
a light composite strongly-interacting Higgs [29–44] of a
proper mass.

A feverish activity in building effective descriptions and
identifying possible underlying theories is taking place on
the theoretical front nowadays. The focus lies in the mod-
eling, parameterizing, and fitting the 125-GeV Higgs-like
boson sector of candidate theories (see, e.g., [45, 46]).
Effectively, the Higgs-like boson can be described as a
stand-alone singlet added to the non-linear sigma model
of the Nambu–Goldstone bosons. This is the most model-
independent approach, but with the least predictive power.
Alternatively, the Higgs-like scalar can be made a member
of a multiplet of the symmetry of the strong sector [47]. The
latter approach results in additional experimentally testable
restrictions on free parameters of the model. At the same
time, it can provide a mechanism for keeping the scalar res-
onance light.

Following theoretical arguments, as well as the example
of QCD, it seems reasonable to expect that beside the com-
posite scalar the new strong interactions would also produce
bound states of higher spins. A natural candidate to look for
is the vector SU(2) triplet resonance. From another point of
view, if the composite Higgs couplings differ from the SM
ones, as is usually the case in strongly interacting theories,
the Higgs alone will fail to unitarize the V V (V = W±,Z)
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scattering amplitudes. Then, additional resonances are re-
quired to tame the unitarity.

In this paper, we study the effective Lagrangian where
beside the 125-GeV scalar resonance—an SU(2)L+R sin-
glet complementing the non-linear triplet of the Nambu–
Goldstone bosons—the SU(2)L+R triplet of vector reso-
nances is explicitly present. It fits the situation when the
global SU(2)L × SU(2)R symmetry is broken down to
SU(2)L+R . As far as the vector resonance sector is con-
cerned, the vector triplet is introduced as a gauge field via
the hidden local symmetry approach [48]. Because of this,
the vector resonance mixes with the EW gauge bosons,
which results in appearance of indirect couplings of the vec-
tor resonance with all SM fermions. Besides, the direct cou-
plings of the vector resonance triplet to the SM fermions are
also allowed by the Lagrangian symmetry. Regarding the
direct couplings we opt for a special setup inspired by the
speculations about an extraordinary role of the top quark (or
the third quark generation) in new strong physics: we admit
direct couplings of the new triplet to no other SM fermions,
but the top and bottom quarks only. Finally, the symmetry
allowed interaction terms between the scalar and vector res-
onances are also present.

In the strong scenario, the direct couplings between the
SM fermions and the vector resonance can depend on the
degree of compositeness of a given fermion as well as on
symmetry group representations the fermions are organized
into. In principle, the degree of compositeness of the SM
fermions can vary for different flavors and chirality. Theo-
ries that can be related to our effective description include
2-site deconstructed models, purely 4-dimensional multi-
site models, and composite Higgs models [40, 41, 47, 49–
55]. All these models predict the existence of resonances of
higher spins, including the vectorial ones. The idea of partial
compositeness that appears in some of these models could
justify the exclusivity of the third quark direct couplings to
the vector resonances in our effective Lagrangian.

The couplings of the hypothetical vector resonance to
light fermions are tightly restricted by the existing measure-
ments from the LEP, SLC, and Tevatron experiments. Thus,
it is reasonable to neglect them also from the experimental
point of view. The direct coupling of the vector resonance
to the bottom quark is also restricted by the experiments
through the measurement of the Zbb vertex, at least. In our
effective Lagrangian, the influence of this restriction on the
direct interaction with the top quark has been weakened by
the splitting of the interaction with the right top and bottom
quark.

As far as the direct LHC bottom limits on the vector
resonance masses are concerned, they are strongly model-
dependent. In general, it can be said that considering the par-
tial compositeness for the third quark generation only admits
the limits to be as low as 300 GeV, or even less, for certain

values of the Higgs-like boson couplings [32]. The most re-
strictive bottom limit is obtained when no compositeness of
the SM fermions is assumed; it is slightly below 1 TeV.

In this paper, we study the unitarity constraints and the
best fits of the vector resonance free parameters to the ex-
isting data. We perform the best-fit analysis under the sim-
plifying assumption that the scalar resonance couplings are
the SM ones. It should serve as an approximation of the
situation allowed by the experiment when the actual scalar
couplings do not differ too much from the SM ones. In set-
ting constraints on the vector resonance couplings the pub-
lished LHC analyses cannot compete with the low-energy
measurements yet. Therefore we focus on the low-energy
data when calculating the limits. Our analysis have been per-
formed as a multi-observable χ2-fit taking into account the
correlations among the observables used. The list of fitted
observables is comprised of ε1, ε2, ε3, Γb(Z → bb̄ + X),
and BR(B → Xsγ ). Throughout the analysis the mass of
the considered vector triplet assumes TeV values.

This paper is organized as follows. In Sect. 2 we intro-
duce our effective Lagrangian. In Sect. 3 the tree-level uni-
tarity limits for the longitudinal electroweak gauge boson
scattering as function of the scalar and vector resonance
parameters are calculated and discussed. Section 4 is de-
voted to the low-energy analysis of the vector resonance
couplings. Section 5 contains our conclusions followed by
appendices.

2 The effective Lagrangian

We introduce the SU(2)L+R triplet vector resonance to the
usual SU(2)L × SU(2)R → SU(2)L+R effective Lagrangian
with the non-linearly transforming SU(2)L+R triplet of the
would-be Nambu–Goldstone bosons augmented with the
SU(2)L+R singlet scalar resonance. The vector triplet is
brought in as a gauge field via the hidden local symmetry
(HLS) approach [48]. The effective Lagrangian is built to re-
spect the global SU(2)L ×SU(2)R ×U(1)B−L ×SU(2)HLS

symmetry of which the SU(2)L × U(1)Y × SU(2)HLS sub-
group is also a local symmetry. The SU(2)HLS symmetry is
an auxiliary gauge symmetry invoked to accommodate the
SU(2) triplet of vector resonances. Beside the scalar singlet
and the vector triplet, the effective Lagrangian is built out of
the SM fields only.

Our effective Lagrangian can be split in three terms,

L = LGB +LESB +Lferm, (1)

where LGB describes the gauge boson sector including the
SU(2)HLS triplet, LESB is the scalar sector responsible for
spontaneous breaking of the electroweak and hidden local
symmetries, and Lferm is the fermion Lagrangian of the
model.
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Beside the SM gauge fields Wa
μ(x) and Bμ(x), the

SU(2)HLS gauge triplet Vμ = (V 1
μ,V 2

μ,V 3
μ) represents hy-

pothetical neutral and charged vector resonances of a new
strong sector. Under the [SU(2)L ×SU(2)R]glob ×SU(2)loc

HLS
group the triplet transforms as

V μ → h†V μh + h†∂μh, (2)

where h(x) ∈ SU(2)loc
HLS and V μ = i

g′′
2 V a

μτa . The 2×2 ma-
trices τ = (τ 1, τ 2, τ 3) are the SU(2) generators.

The ESB sector contains six unphysical real scalar
fields, would-be Goldstone bosons of the model’s spon-
taneous symmetry breaking. The six real scalar fields
ϕa

L(x),ϕa
R(x), a = 1,2,3, are introduced as parameters

of the SU(2)L × SU(2)R group elements in the exp-form
ξ(ϕL,R) = exp(iϕL,Rτ/v) ∈ SU(2)L,R where ϕ = (ϕ1, ϕ2,

ϕ3).
In the ESB sector the would-be Goldstone bosons couple

to the gauge bosons Wa
μ , Bμ, V a

μ , and to the 125-GeV scalar
resonance h(x) obeying [SU(2)L × U(1)Y × SU(2)HLS]loc

symmetry requirements. Thus,

LESB = 1

2
∂μh∂μh − 1

2
M2

hh2

− v2[Tr
(
ω̄⊥

μ

)2 + α Tr
(
ω̄‖

μ

)2]

×
(

1 + 2a
h

v
+ a′ h2

v2
+ · · ·

)
, (3)

where α, a, a′, . . . are free parameters, Mh = 125 GeV, and
ω̄

‖,⊥
μ are, respectively, SU(2)L−R and SU(2)L+R projec-

tions of the gauged Maurer–Cartan 1-form,

ω̄‖
μ = ω‖

μ + 1

2

(
ξ

†
LWμξL + ξ

†
RBμξR

) − V μ, (4)

ω̄⊥
μ = ω⊥

μ + 1

2

(
ξ

†
LWμξL − ξ

†
RBμξR

)
, (5)

where ω
‖,⊥
μ = (ξ

†
L∂μξL ± ξ

†
R∂μξR)/2. When a = a′ = 1 and

all other a’s are zeros, the scalar resonance imitates the SM
Higgs boson.

The masses of the vector triplet are set by the scale v

and depend on the three gauge couplings g,g′, g′′, and the
free parameter α. In the limit when g and g′ are negligi-
ble compared to g′′, the masses of the neutral and charged
resonances are degenerate, MV = √

αg′′v/2. If higher order
corrections in g/g′′ are admitted, a tiny mass splitting occurs
such that MV 0 > MV ± [56].

As far as the fermion sector is concerned, no new
fermions beyond the SM have been introduced in our La-
grangian. The fermion sector of the Lagrangian can be di-
vided into three parts

Lferm = LSM
ferm +Lscalar

ferm +LtBESS
(t,b) , (6)

where LSM
ferm contains the SM interactions of fermions with

the electroweak gauge bosons, Lscalar
ferm is about the interac-

tions of the fermions with scalar fields and includes the

fermion masses, and LtBESS
(t,b) describes the third quark gener-

ation direct interactions with the vector resonance. In addi-
tion, it contains symmetry allowed non-SM interactions of
the third quark generation with the EW gauge bosons.

The first term of (6) is identical to its SM counterpart.
Namely,

LSM
ferm =

∑

∀ψ

[
IL
c (ψL) + IR

c (ψR)
]
, (7)

where ψ denotes the usual SU(2) doublets1 of SM fermions
and the sum runs through them. The invariants I

L,R
c read

IL
c (ψL) = iψ̄L(/∂ + /W + /B)ψL, (8)

IR
c (ψR) = iψ̄R(/∂ + /B)ψR. (9)

The second term of the Lagrangian (6) reads

Lscalar
ferm = −

∑

i

Imass
(
ψi

)(
1 + ci

h

v
+ c′

i

h2

v2
+ · · ·

)
, (10)

where ci, c
′
i , . . . are free parameters, and

Imass
(
ψi

) = ψ̄ i
LUMi

f ψi
R + H.c., (11)

where Mi
f is a 2 × 2 diagonal matrix with the masses of

the upper and bottom ith fermion doublet components on its
diagonal, and U = ξ(π) · ξ(π) = exp(2iπτ/v). Note that
when ci = 1,∀i, and the rest of c’s are zeros the scalar reso-
nance interactions with fermions imitate the corresponding
interactions of the SM Higgs boson.

The third term of (6) coincides with the corresponding
part of the Lagrangian that we introduced in [56]. The ef-
fective Lagrangian in [56] was a Higgs-less description of a
vector resonance triplet that was made obsolete by the 125-
GeV boson discovery. Nevertheless, the motivation for the
vector resonance interaction pattern with fermions that was
used in [56] has remained unchanged and we use the same
pattern in this paper. Thus, the vector resonance couples di-
rectly to the third quark generation only. The interactions
of the left and right fields are proportional to bL and bR ,
respectively. In addition, there is a free parameter p which
disentangles the right bottom coupling from the right top
coupling. The assumption that the vector resonance interac-
tion with the right bottom quark is weaker than the inter-
action with the right top quark corresponds to the expec-
tation that 0 ≤ p ≤ 1. While p = 1 leaves the interactions
equal, the p = 0 turns off the right bottom quark interac-
tion completely and maximally breaks the SU(2)R part of
the Lagrangian symmetry down to U(1)R3. In addition, the
symmetry of the Lagrangian admits non-SM interaction of
the fermions with the EW gauge bosons that we also include

1Of course, the SU(2)R symmetry is broken by the weak hypercharge
interactions and, thus, the SU(2)R fermion doublets are not well justi-
fied once the global symmetry gets gauged.
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in LtBESS
(t,b) under the assumption that they apply to the third

quark generation only. These interactions are proportional
to the free parameters λL and λR . The LtBESS

(t,b) Lagrangian

reads2

LtBESS
(t,b) = bL

[
IL
b (ψL) − IL

c (ψL)
]

+ bR

[
IR
b (PψR) − IR

c (PψR)
]

+ 2λLIL
λ (ψL) + 2λRIR

λ (PψR), (12)

where ψ = (t, b). The invariants I
L,R
b and I

L,R
λ read

Ih
b (ψh) = iχ̄h

[
/∂ + /V + ig′/B(B − L)/2

]
χh, (13)

Ih
λ (ψh) = iχ̄h 
ω̄⊥χh

= iχ̄h

[
ω⊥ + (
ξ

†
L/WξL − ξ

†
R/BR3ξR

)
/2

]
χh, (14)

where B and L are the baryon and lepton number opera-
tors, respectively, h = L,R, χh ≡ χ(ϕh,ψh) = ξ†(ϕh) ·ψh,
/BR3 = ig′/Bτ 3. The matrix P = diag(1,p) disentangles the
direct interaction of the vector triplet with the right top quark
from the interaction with the right bottom quark.

Note that under the parity transformation, IL
b ↔ IR

b and
IL
λ ↔ −IR

λ . Therefore, the new physics interactions in the
fermion Lagrangian break parity, unless p = 1, bL = bR ,
and λL = −λR .

The direct couplings of the top and bottom quarks can
be due to their partial compositeness. They can emerge
from the underlying theory through interweaving the top
and bottom quark fields with the fermionic operators in the
new strong sector. The absence of the vector resonance di-
rect couplings with light SM fermions can indicate that the
fermions are elementary.

In the unitary (physical) gauge where all six unphysical
scalar fields are gauged away the gauged MC 1-form projec-
tions (4) and (5) read

ω̄⊥
μ = 1

2
(Wμ − Bμ), (15)

ω̄‖
μ = 1

2
(Wμ + Bμ) − V μ. (16)

Thus, the ESB Lagrangian (3) assumes the form

LESB = 1

2
∂μh∂μh − 1

2
M2

hh2 − v2

4

{
Tr(Wμ − Bμ)2

+ α Tr
[
(Wμ + Bμ) − 2V μ

]2}

×
(

1 + 2a
h

v
+ a′ h2

v2
+ · · ·

)
. (17)

2Throughout this paper we use the ‘tBESS’ label to indicate the
SU(2)L+R vector resonance triplet with this particular interaction pat-
tern to fermions. The label is inspired by the fact that our vector reso-
nance in our effective Lagrangian is introduced in the same way as in
the BESS model [57–59] and that top quark and/or third quark genera-
tion has a special standing in its interactions, different from the original
BESS model.

In the fermion sector the Lagrangian (10) turns into

Lscalar
ferm = −1

v

∑

i

(
ψ̄ i

LMi
f ψi

R

)(
1 + ci

h

v
+ c′

i

h2

v2
+ · · ·

)
(18)

and the new physics part of the (t, b) Lagrangian assumes
the form

LtBESS
(t,b) = ibLψ̄L(/V − /W )ψL

+ ibRψ̄RP
(
/V − /BR3)PψR

+ iλLψ̄L

(
/W − /BR3)ψL

+ iλRψ̄RP
(
/W − /BR3)PψR. (19)

To obtain the masses of the electroweak gauge bosons as
well as of the new vector resonances their mass matrix has
to be diagonalized. The unitary gauge ESB Lagrangian (17)
expressed in the gauge boson mass basis reads

LESB = 1

2
∂μh∂μh − 1

2
M2

hh2

+ 1

2

(
M2

ZZμZμ + 2M2
WW+

μ W−μ

+ M2
V 0V

0
μV 0μ + 2M2

V ±V +
μ V −μ

)

×
(

1 + 2a
h

v
+ a′ h2

v2
+ · · ·

)
. (20)

Once the gauge boson fields are expressed in the gauge
boson mass basis, the mixing generated interactions of the
vector triplet with all fermions will emerge from the fermion
Lagrangian LSM

ferm. However, these indirect interactions of
the vector resonance with the light fermions will be sup-
pressed by the mixing matrix elements proportional to 1/g′′.

The request that our Lagrangian be treatable perturba-
tively bounds the values of g′′ from above by the naive per-
turbativity limit, g′′/2 � 4π , implying g′′ � 25. If we took
this value as the final say in this issue it would not be rea-
sonable to use g′′ higher than about 20 in our calculations.
Nevertheless, one can imagine that a more rigorous analysis
of the perturbativity limit could somehow modify its value
one way or the other. For this reason, as well as motivated
by the best-fit value of g′′ = 29 (see Eq. (67) in Sect. 4.3),
we show results of our analysis for g′′ up to 30. Neverthe-
less, the reader should keep in mind that the chance that the
shown results are not meaningful grows with g′′, especially
above 20.

In principle, the vector resonance parameters can be con-
strained even before its discovery through measurements of
observables affected by the resonance existence. For exam-
ple, the measurement of the gauge boson self-interactions
can be used to restrict the coupling g′′ of our effective La-
grangian. In particular, the triple gauge boson couplings
(TGC) were probed by various experiments: D0, LEP, AT-
LAS, and CMS [60–64]. Among these, the most stringent
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constraints originate from the LEP measurement of W -
pairs in e+e− → W+W−. Using the results of the anal-
ysis of the LEP data in [61–63] we get the lower bound
on g′′ ≥ 5 at 95 % CL (�κZ ≥ −0.02). In [65] the TGC
coupling constraints were obtained by combining the Higgs
data with the D0, LEP, and ATLAS measurements. Their re-
sults (�κZ ≥ −0.004) imply the lower bound on g′′ ≥ 11
at 95 % CL. Note that the combined lower limit on g′′ con-
verges on the lower 95 % CL limit, g′′ ≥ 12, that will be
obtained in Sect. 4.3 from the low-energy data. However,
the reader should be warned that while the limits for �κZ

were derived in the formalism with three free parameters
the tBESS TGC coupling depends on a single free param-
eter. The rigorous derivation of the g′′ limit would require
some additional constraints to be imposed in the TGC anal-
ysis from the onset. Thus, the TGC implied g′′ limits shown
above should be taken as estimates only.

The ATLAS constraints on the Wtb vertex [66] can be
used to derive limits on the vector resonance couplings to
fermions. The limits are shown in footnote 4, Sect. 4.3,
where they can be confronted with the low-energy con-
straints obtained therein. Let us advertise that the Wtb in-
duced limits are not competitive yet. Unfortunately, the as-
sumptions used in the newer analysis of the Wtb vertex by
the CMS [67], as well as in the combined ATLAS+CMS
analysis [68], are not compatible with our formalism.

There are other LHC measurements that are candidates
for restricting the vector resonance parameters. At this point,
however, they do not provide useful restriction on the tBESS
parameters because either an appropriate analysis of needed
observables is missing or there is no sufficient statistics yet.

As far as the scalar parameters are concerned the direct
LHC measurements restrict a and ci ’s to the vicinity of their
SM values [4, 5, 69–71]. In particular, authors of [5] cal-
culated constraints on seven free parameters of the effective
Lagrangian with the 126 GeV scalar. Using the most recent
LHC Higgs data in all available search channels in combi-
nation with electroweak precision observables from SLC,
LEP-1, LEP-2, and the Tevatron. they found a restriction
0.98 ≤ a ≤ 1.08 at 95 %CL when the seven-parameter fit
was performed. Under the assumptions inspired by the com-
posite Higgs scenario when the Higgs couples equally to all
fermions and the NLO couplings are set to zero the param-
eter a is restricted to be within 10 % of the SM value at
95 % CL. Regarding the ci parameters ct , cb , and cτ only
have been restricted by the LHC measurements so far. The
composite Higgs scenario fit implies 0.7 ≤ ct = cb = cτ ≤
1.2 at 95 % CL [5].

In this paper the analysis of our effective Lagrangian fo-
cuses on the setting unitarity restrictions for the validity of
the Lagrangian and on the fitting of the Lagrangian free pa-
rameters using the low-energy precision data. As it was ar-
gued in [5] the contributions of the Lagrangian terms pro-
portional to h2, or higher powers of h, can be neglected in

the electroweak precision analysis. At the same time, these
terms have not been probed by the existing data. Thus, in
our analysis we can ignore all these terms. As far as ci ’s are
concerned the electroweak observables are not sensitive to
them at one loop level, neither they influence our unitarity
calculations.

Having said that the fitting calculations will be performed
under simplifying assumptions a = ci = 1, i.e. the scalar
resonance couples as the SM Higgs boson. This assumption
can be regarded as an approximation of the situation when
the parameters do not differ too much from their SM values.
The assumption is made for the sake of simplification of the
analysis when our major goal is to get a basic picture about
the interplay between the scalar and vector resonances in
the effective Lagrangian. A more general study for non-SM
scalar resonance couplings is in progress.

3 Tree-level unitarity limits

The SM without the SM Higgs boson is not renormalizable
and its amplitudes violate unitarity at some energy. In par-
ticular, if the couplings of the 125-GeV Higgs differ from
those of the SM Higgs boson, they fail in unitarization of
the gauge boson scattering amplitudes. In this situation, the
introduction of other resonances might be necessary in order
to fix the unitarity or to postpone its violation, at least.

In the Higgs-less SM, one can estimate the scattering en-
ergy at which the unitarity violation occurs using the Equiv-
alence Theorem [72–76] approximation of the W+

L W−
L ,

ZLZL, W±
L ZL, and W±

L W±
L scattering by the pionic scat-

tering amplitudes of the non-linear sigma model. Thus, one
can find that the SM without Higgs violates the tree-level
unitarity at

√
s = 1.7 TeV [56, 77].

In our effective Lagrangian, the scattering amplitudes in-
clude the exchange of the new resonances, the scalar one
and the vector ones. At tree-level the amplitudes read

M
(
W+

L W−
L → W+

L W−
L

) = A(s, t, u) + A(t, s, u),

M(ZLZL → ZLZL) = 0,√
2M

(
W+

L W−
L → ZLZL

) = A(s, t, u),

M
(
W±

L ZL → W±
L ZL

) = A(t, s, u),√
2M

(
W±

L W±
L → W±

L W±
L

) = A(t, s, u) + A(u, t, s),

where

A(s, t, u) = s

4v2
(4 − 3α) + αM2

V

4v2

[
u − s

t − M2
V

+ t − s

u − M2
V

]

− a2

v2

s2

s − M2
H

. (21)

The widths of both resonances have been neglected; this is
justifiable as long as their masses are far from the unitarity
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Fig. 1 The tree-level unitarity constraints from the electroweak
gauge-boson scattering as functions of a. The shaded area under the
solid line depicts the unitarity allowed region for the effective La-
grangian without the vector resonance. The dashed and dot-dashed
lines indicate the shift of the region when the 1 TeV or 2 TeV vec-
tor triplets, respectively, are added. In both cases g′′ = 20. Zero decay
widths of the new resonances are assumed

limit when measured in terms of the widths. Recall that a =
1 corresponds to the SM Higgs boson case and that α =
(2MV /g′′v)2.

Obviously, the unitarity constraints obtained from
Eqs. (21) depend on the mass of the vector resonance as well
as on the degree of anomalousness of the scalar resonance
coupling a. Once a 
= 1 the Higgs can no longer guaran-
tee unrestricted unitarity. This problem can be assisted with
by invoking additional resonances. The tree-level unitarity
constraints as functions of a obtained for various masses of
the vector triplet and g′′ = 20 are shown in Fig. 1. It illus-
trates the inter-play between the non-SM 125-GeV scalar
resonance and the vector triplet in securing the unitarity of
the gauge boson scattering amplitudes. With the scalar reso-
nance only, as a departs from one the unitarity limit lowers.
Adding the vector resonance triplet tends to improve the
unitarity for some a < 1. On the other hand, when a > 1, it
further lowers the unitarity limit.

Figure 2 illustrates the expected behavior: while adding
the vector resonance to the Higgs-less SM improves its uni-
tarity limit, it introduces the unitarity problem to the SM
with the SM Higgs boson present. Note that in the graph
the gray vertical line at g′′ = 25 indicates the position of
the naive perturbativity limit. In the same way the limit will
be shown in all following graphs whenever appropriate. In
Fig. 3 we show the tree-level unitarity restrictions for the ef-
fective Lagrangian when MV = 1 TeV and a assumes some
non-SM values.

Should the unitarity of the effective Lagrangian hold up
to a certain energy the allowed region for the values of a and
g′′ can be constructed. The allowed region has a shape of a
bent stripe. In particular, the allowed regions for the unitarity
constraints of 3 or 5 TeV when MV = 1 TeV are depicted in
Fig. 4.

Fig. 2 The tree-level unitarity constraints from the electroweak
gauge-boson scattering as functions of g′′. The shaded areas indicate
regions where the unitarity holds. The horizontal blue dotted line is the
Higgs-less SM unitarity limit of 1.7 TeV. The red dot-dot-dashed line
is the unitarity limit when there is the 1 TeV vector resonance and no
Higgs. The black lines indicate the unitarity constraints for the effec-
tive Lagrangian with the a = 1 scalar and the 1 TeV (solid) or 1.5 TeV
(dashed) or 2 TeV (dot-dashed) vector resonances. Zero decay widths
of the new resonances are assumed. The vertical gray line at g′′ = 25
indicates the position of the naive perturbativity limit (Color figure on-
line)

Fig. 3 The tree-level unitarity constraints from the electroweak
gauge-boson scattering as functions of g′′ for different values of the
scalar to gauge boson coupling: a = 1 (solid), a = 0.7 (dashed),
a = 0.95 (dot-dashed), and a = 1.1 (dot-dot-dashed). The 1 TeV vec-
tor resonance and no decay widths are considered (Color figure online)

These findings imply that to secure the tree-level unitarity
when a decreases away from its SM value either higher vec-
tor resonance mass or lower g′′ have to be invoked. The role
of the vector resonance is destructive though if a departs
from its SM value in the opposite direction. Of course, in
the approximation we use these conclusions are independent
of the fermion sector structure of the effective Lagrangian.
The observed behavior depends on properties of scalar and
vector resonances only. Adding the SU(2)L+R triplet axial-
vector resonances or introducing additional constraints on
the resonance couplings due to the assumption that the scalar
resonance is a pseudo Nambu–Goldstone boson of some sort
could alter these conclusions. The investigation of the uni-
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Fig. 4 The allowed regions of the a and g′′ parameter space should
the tree-level unitarity hold up to 3 TeV (light gray) and 5 TeV (dark
gray). The 1 TeV vector resonance and no decay widths are considered

tarity question could be refined by considering the gauge
boson decay widths and/or additional scattering amplitudes.
This would make the unitarity limits sensitive also to the
properties of the fermion sector.

4 The low-energy analysis

4.1 Integrating out the vector resonance triplet

If there is the tBESS vector resonance triplet we can learn
about its parameters even before its discovery by measur-
ing deviations of the known particle couplings from their
SM values. For example, due to the mixing between the
vector resonance and the EW gauge bosons the deviations
from the SM values would be present in the couplings of the
EW gauge bosons to the SM fermions. In this sense, in the
case of our effective Lagrangian the most interesting ver-
tices should be those of the top and bottom quarks: Wtb,
Zbb, and Ztt .

Unfortunately, the measurements of the Wtb and Ztt

vertices has been rather coarse so far [78]. On the other
hand, the couplings of the light fermion vertices including
Zbb have been measured at previous colliders, sometimes
to a very high precision. We refer to these measurement as
the low-energy measurements. While the LHC is capable to
refine these measurements, and it has done so already, the
existing improvement are not sufficient to compete with the
low-energy restrictions on the tBESS parameters. Thus, in
our analysis we will focus on the low-energy measurements.

To confront the tBESS free parameters with the low-
energy measurements performed at O(102) GeV, we de-
rive the low-energy (LE) Lagrangian by integrating out
the vector resonance triplet the assumed mass of which is
O(103) GeV. It proceeds by taking the limit Mtriplet → ∞,
while g′′ is finite and fixed, and by substituting the vector

resonance equation of motion (EofM) obtained under these
conditions. The EofM in the unitarity gauge reads

i
g′′

2
V a

μ = 1

2

(
igWa

μ + ig′Bμδa3), (22)

where a = 1,2,3. After the EofM is substituted into the uni-
tary gauge ESB Lagrangian (17) the alpha multiplied trace
term disappears. We end up with

LLE
ESB = 1

2
∂μh∂μh − 1

2
M2

hh2 − v2

4
Tr(Wμ − Bμ)2

×
(

1 + 2a
h

v
+ a′ h2

v2
+ · · ·

)
. (23)

Of course, the EofM has to be substituted in all Lagrangian
terms where the vector resonance field occurs. Then, after
the gauge boson mass matrix diagonalization and the renor-
malization of the gauge boson fields the low-energy limit of
our effective Lagrangian is obtained.

Since α → ∞, the number of free parameters in the ESB
sector has dropped by one. In the low-energy Lagrangian it
is convenient to introduce and use parameters e and sθ that
are related to the strengths of the charged and neutral cur-
rents; actually, e is the electric charge and sθ a counterpart
of the Weinberg angle sine. In addition, the parameter x en-
codes the low-energy residues of the new interaction of the
vector resonance triplet. The relations of e, sθ , and x to the
parameters of the full effective Lagrangian are

e = gg′/G
√

1 + (
gg′

Gg′′/2 )2
, sθ = g′/G, x = g/g′′, (24)

where G = (g2 + g′2)1/2. The EW gauge boson masses ex-
pressed in terms of e, sθ , and x are given by

M2
W = g2

LE v2

4
, M2

Z = G2
LE v2

4
, (25)

where gLE and GLE are the LE strengths of the charged and
neutral currents, respectively. Namely,

g2
LE = 1 + 4s2

θ x2

1 + x2

e2

s2
θ

, G2
LE = (1 + 4s2

θ x2)2

c2
θ + x2

e2

s2
θ

, (26)

where cθ = (1 − s2
θ )1/2.

The EofM also modifies the LtBESS
(t,b)

term in (6). Thus

LLE
ferm ≡ LSM

ferm +LLE−tBESS
(t,b) +Lscalar

ferm . (27)

In the EW gauge boson mass eigenstate basis and after the
proper renormalization the relevant parts of the LLE

ferm can be
expressed as

LSM
ferm +LLE−tBESS

(t,b) = iψ̄/∂ψ − eψ̄/AQψ

− GLE

2
ψ̄/Z(CLPL + CRPR)ψ

− gLE√
2

ψ̄
(
/W+τ+ + /W−τ−)

× (DLPL + DRPR)ψ, (28)
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where τ± = τ 1 ± iτ 2, PL,R = (1 ∓ γ5)/2. For the light
fermions (all SM fermions except the top and bottom
quarks) DL = 1, DR = 0, and

CL = 2T 3
L − 2κs2

θ Q, CR = −2κs2
θ Q, (29)

where

κ = 1 + 2x2

1 + 4s2
θ x2

. (30)

In the case of the top and bottom quarks,

CL = 2(1 − �L/2) T 3
L − 2κs2

θ Q, (31)

CR = 2(Pf �R/2) T 3
R − 2κs2

θ Q, (32)

where Pt = 1, Pb = p2, and

DL = 1 − �L/2, DR = p �R/2, (33)

where

�L = bL − 2λL, �R = bR + 2λR. (34)

Hence, the number of free parameters has been reduced also
in the fermion sector of the low-energy Lagrangian. The
low-energy observables will depend on the combinations
(34) of b and λ parameters only. Therefore no limits derived
from the low-energy measurements can apply to b’s and λ’s
individually.

In order to make numerical predictions the model under
consideration must be supplied with an experimental input.
The appropriate experimental input in the case of the LE La-
grangian consists of the measured value of the Fermi con-
stant GF , the fine structure constant α at the energy scale
MZ , and the mass MZ of the Z boson. It will prove conve-
nient to replace GF with the sine of the SM Weinberg angle
s0 using the SM relation

GF√
2

= 2π α(MZ)

(2s0c0)2M2
Z

, (35)

where c0 = (1 − s2
0)1/2. Thus, given the experimental values

of α(MZ), MZ , and GF , s0 can be considered as a replace-
ment of GF in this list.

The value of e is just a synonym of the measured value
of α, e2 = 4πα. The non-trivial question is how to properly
trade s0 and MZ for sθ and v. For this we have to write down
the LE formula for GF ,

GF√
2

= 2π α(MZ)

(2sθ cθ )2M2
Z

(1 + 4s2
θ x2)2

1 + ( x
cθ

)2
. (36)

Then, comparing (36) with (35) we obtain the implicit rela-
tion for sθ (s0, x):

s0c0 = sθ cθ

√
1 + ( x

cθ
)2

1 + 4s2
θ x2

. (37)

To replace the parameter v the LE formula for the Z boson
mass,

MZ = ev

2s0c0
(38)

can be considered.
Regarding the remaining parameters the value of Mh is

given by the mass of the recently discovered candidate of
the Higgs boson. Thus, in the following analysis we will
set Mh = 125 GeV. Parameters fixed by experiment also
include the fermion masses. The existing restrictions on
a, a′, . . . and cf , c′

f , . . . have been discussed at the end of
Sect. 2. As it was also indicated, there we will perform the
best-fit analysis under the simplifying assumption that the
scalar resonance couplings are those of the SM. It leaves us
with four free parameters that will be used to fit the observ-
ables: x, �L, �R, and p. In principle, there is also the cut-
off scale Λ of the LE effective Lagrangian. This is usually
related to the mass of the integrated out vector resonance.
Our analysis will be performed with the cut-off scale fixed.

4.2 Predictions for the low-energy observables

The deviations of the LE Lagrangian from its SM coun-
terpart modify predictions for the low-energy observables.
Thus we can use their measured values to derive the prefer-
ences and restrictions on the LE free parameters.

In particular, the experimental limits for the LE-tBESS
parameters will be derived by fitting the low-energy
(pseudo-)observables,3 ε1, ε2, ε3, Γb(Z → bb̄), and
BR(B → Xsγ ). The epsilons are related to the basic ob-
servables [79, 80]: the ratio of the electroweak gauge boson
masses, rM ≡ MW/MZ ; the inclusive partial decay width
of Z to the charged leptons, Γ�(Z → ��̄ + photons); the
forward-backward asymmetry of charged leptons at the Z-
pole, AFB

� (MZ); and the inclusive partial decay width of Z

to bottom quarks, Γb(Z → bb̄ + X).
The deviations of rM , Γ�, and AFB

� from their predicted
SM tree level values including the QED and QCD loop con-
tributions are parameterized by the dynamical corrections
�rW , �ρ, and �k as follows [79, 80]:
(
1 − r2

M

)
r2
M = πα(MZ)√

2GF M2
Z(1 − �rW)

(39)

and

Γ� = GF M3
Z

6π
√

2

(
g�

A

)2(1 + r2
g

)(
1 + 3α

4π

)
, (40)

AFB
� = 3r2

g

(1 + r2
g)2

, (41)

3The quantities Γb and BR(B → Xsγ ) are more intimately related to
actual observables than the epsilons. To stress this fact, one might wish
to nickname the epsilons as pseudo-observables. Nevertheless, in the
following text we will not make this distinction and will call the ep-
silons as observables, too.
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where

g�
A = −1

2

(
1 + �ρ

2

)
,

rg = g�
V

g�
A

= 1 − 4(1 + �k)s2
0 .

(42)

The three epsilons can be defined as the combinations of
the dynamical corrections [79, 80]:

ε1 = �ρ, (43)

ε2 = c2
0�ρ + s2

0

c20
�rW − 2s2

0�k, (44)

ε3 = c2
0�ρ + c20�k, (45)

where s0 (c0) was defined in Eq. (35), and c20 ≡ c2
0 − s2

0 .
The Zbb vertex is naturally tested in the Z → bb̄ + X

decay. The corresponding decay width formula reads [79,
80]

Γb = GF M3
Z

6π
√

2
β

[
3 − β2

2

(
gb

V

)2 + β2(gb
A

)2
]

× NCRQCD

(
1 + α

12π

)
, (46)

where β = (1 − 4m2
b/M

2
Z)1/2, and RQCD = 1 + 1.2a −

1.1a2 − 13a3 is the QCD correction factor, a = αs(MZ)/π .
The precise measurement of Γb can uncover whether the

bottom quark anomalous couplings gb
V,A differ from the

anomalous couplings of other charged SM fermions. As-
suming the couplings differ in their SU(2)L parts only, the
standard parameterization of the difference is by introducing
the parameter εb [79, 80]:

gb
A = g�

A(1 + εb), (47)

gb
V =

(
1 + �ρ

2

)[
−1

2
(1 + εb) + 2

3
(1 + �k)s2

0

]
. (48)

However, our effective Lagrangian admits a more general
pattern of the bottom versus light quark anomalous coupling
difference than it is assumed in the definition of εb . In our
effective Lagrangian the εb definition assumptions are met
when either p = 0, or bR = −2λR . Otherwise, the experi-
mental value of Γb rather then ε

exp
b must be related to theo-

retical prediction in order to derive the low-energy limits on
the tBESS free parameters.

The scalar resonance couplings do not contribute to the
dynamical corrections at tree level. Thus, the tree-level con-
tributions of the LE Lagrangian to the �rW , �ρ, and �k

as well as to gb
V,A are given by the vector resonance sector

only. They read

�ρ = 0, �k =
(

sθ

s0

)2

κ(x, sθ ) − 1, (49)

gb
V = 1

4

(
�L − p2 �R

) + 2

3
�ks2

0 , (50)

gb
A = 1

4

(
�L + p2 �R

)
. (51)

The tree-level contribution to �rW is obtained from the LE
expression for the ratio rM = MW/MZ . It reads

r2
M = c2

θ + x2

(1 + 4s2
θ x2)(1 + x2)

. (52)

Then

�rW = 1 −
(

1 + x2

1 + 2x2

)2

. (53)

Now, the tree-level contributions to εi ’s can be obtained
from the dynamical corrections using Eqs. (43) through
(45):

ε1 = 0,

ε2 = s2
0

c20

x2(2 + 3x2)

(1 + 2x2)2
− 2s2

0 �k(x),

ε3 = c20 �k(x),

where �k(x) is given in (49). The leading terms of the ep-
silon expansions in powers of x at x = 0 read

ε2 = −2.71x4 + 2.96x6 + · · · , (54)

ε3 = x2 + 0.66x4 + 2.56x6 + · · · . (55)

There is no reason to expect that the LE anomalies at
the tree level overwhelm the 1-loop contributions of the LE
Lagrangian to the epsilons. Thus, both contributions should
be considered when predicting the epsilon observables

εi = ε
LE(0)
i + ε

LE(1)
i , i = 1,2,3, b, (56)

where LE(0) and LE(1) denotes the tree-level and 1-loop
contributions of the LE Lagrangian, respectively.

Since we study an effective non-renormalizable La-
grangian, it is not that obvious how to properly deal with the
higher order calculations [81, 82]. One does not know the
underlying theory therefore there is no way to establish a
correct scheme for the effective Lagrangian [83]. While the
divergent piece in loop calculations can be associated with
a physical cut-off Λ up to which the effective Lagrangian is
valid [84], for the finite piece there is no completely satis-
factory approach available [85].

We approximate ε
LE(1)
i by the sum of the SM weak loop

corrections ε
SM(1)
i representing the loop contributions from

the scalar resonance and the vector resonance related loop
contributions ε

vec(1)
i :

ε
LE(1)
i ≈ ε

SM(1)
i + ε

vec(1)
i . (57)

The ε
SM(1)
i contributions are given by the following rela-

tions [86]:

ε
SM(1)
1 =

(
+5.60 − 0.86 ln

Mh

MZ

)
× 10−3, (58)
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ε
SM(1)
2 =

(
−7.09 + 0.16 ln

Mh

MZ

)
× 10−3, (59)

ε
SM(1)
3 =

(
+5.25 + 0.54 ln

Mh

MZ

)
× 10−3, (60)

ε
SM(1)
b = −6.43 × 10−3. (61)

For Mh = 125 GeV and MZ = 91.1876 GeV the follow-
ing SM contributions are obtained: ε

SM(1)
1 = 5.33 × 10−3,

ε
SM(1)
2 = −7.04 × 10−3, and ε

SM(1)
3 = 5.42 × 10−3.

The 1-loop SM contributions to gb
V and gb

A can be ob-
tained by subtracting the SM tree-level couplings from the
SM tree plus 1-loop couplings:
(
gb

V,A

)SM(1) = (
gb

V,A

)SM(0+1) − (
gb

V,A

)SM(0)
, (62)

where (gb
V,A)SM(0+1) are given by Eqs. (47) and (48)

if �ρ = (�ρ)SM(1), �k = (�k)SM(1), and εb = ε
SM(1)
b

are applied. Of course, (gb
V )SM(0) = −1/2 + 2s2

0/3 and
(gb

A)SM(0) = −1/2.

The ε
vec(1)
i contributions can be calculated using the

results of [87]. The paper provides expressions for new
physics loop contributions to the epsilon parameters in terms
of generic anomalous couplings of the non-linear elec-
troweak chiral Lagrangian. Up to the order of m2

t lnΛ2 the
anomalous loop contributions read

ε
NP(1)
1 = 3m2

t GF

2
√

2π2
ln

Λ2

m2
t

[
κWtb
L

(
1 + κWtb

L

)

+ (
κZtt
R − κZtt

L

)(
1 − κZtt

R + κZtt
L

)]
, (63)

ε
NP(1)
2 = ε

NP(1)
3 = 0, (64)

where Λ is the cut-off scale of the effective Lagrangian un-
der consideration. In the cases when the NP(1) contributions
depend on κZbb the dependence is suppressed by mb � mt .

In our case, when Λ = 1 TeV and using the numerical
values of Appendix A, the leading terms of the x2 series of
ε

vec(1)
1 read

ε
vec(1)
1

10−2
= 6.57�R − 2.82(2 − 3�L)x2 + · · · , (65)

where we have also neglected non-linear terms in �L, �R.
The ε

vec(1)
1 series for Λ = 2 TeV is obtained when (65) is

multiplied by the numerical factor of 1.39.
In our analysis, we have not calculated (gb

V,A)vec(1). The

fit is based on the LE(0) and SM(1) contributions to gb
V,A

only. Thus obtained gb
V,A are, in turn, substituted to Eq. (46).

We justified this simplifying approximation by comparing
the single-observable fits based on ε

LE(0)+SM(1)+vec(1)
b with

the fits based on (gb
V,A)LE(0)+SM(1) when p = 0, see [56].

Figure 11 of [56] illustrates that the absence of the vec(1)

contribution in the latter fits introduces only relatively small
shifts in the obtained confidence level contours.

The B → Xsγ decay puts limits on the anomalous
W±tLbL and W±tRbR vertices [81, 82, 87]. In the SM it

proceeds through the flavor changing neutral current loop
process b → sγ dominated by the top quark exchange dia-
gram. The B → Xsγ branching fraction can be sensitive to
physics beyond the SM via new particles entering the pen-
guin loop. When expressed in terms of the real anomalous
Wtb couplings, κWtb

L and κWtb
R , it can be approximated by

the following formula [87]:

BR(B → Xsγ ) × 104 = 3.07 + 280κWtb
R + 2κWtb

L

+ 5520
(
κWtb
R

)2 + 0.3
(
κWtb
L

)2

+ 79κWtb
L κWtb

R . (66)

The expressions for the LE anomalous couplings that
are needed in the formulas (63) and (66) are given in Ap-
pendix B.

4.3 Fits and limits

Using the formulas for the LE predictions we have per-
formed a multi-parameter χ2 fit of the observables in or-
der to obtain the most preferred values and confidence level
intervals for the LE-tBESS parameters. The set of fitted ob-
servables consists of ε1, ε2, ε3, Γb , and BR(B → Xsγ ). The
experimental values of the observables used in this analysis
are shown in Appendix A.

By fitting the five observables mentioned above with the
four free parameters—x, �L, �R, and p—we found the
best values

g′′(x) = 29, �L = −0.004, p �R = 0.003, (67)

with χ2
min = 2.40. Since d.o.f. = 5 − 4 = 1, the obtained

value of χ2
min corresponds to the backing of 12 %. Within

the rounding errors these values hold for the cut-off scale
between 0.3 TeV ≤ Λ ≤ 103 TeV, at least. The best values
of p and �R depend on Λ, separately; in particular,

Λ = 1 TeV: �R = 0.016 p = 0.209 (68)

Λ = 2 TeV: �R = 0.011 p = 0.289. (69)

Note that the best-fit value of g′′ falls into the regions al-
lowed by the unitarity. Further, the preferred value of p

supports the idea about stronger right-top than right-bottom
coupling of the vector resonance. The higher value of g′′ is
certainly preferable considering the assumed strong nature
of underlying fundamental theory. On the other hand, the
best value is somewhat above the naive perturbativity limit
of 25. Of course, the results of our analysis are certainly not
reliable above perturbativity limit. Nevertheless, following
the reasons discussed in Sect. 2 we will show results for g′′
up to 30.

The observables ε1 and Γ (B → Xsγ ) are essential in the
explanation the observed behavior of the preferred values
of p and �R. The parameters p and �R enter three of the
considered observables only. Namely, these are ε1, Γb(Z →
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bb̄), and Γ (B → Xsγ ). While ε1 depends on �R solely,
Γ (B → Xsγ ) depends on the product p �R and Γb depends
on p2�R. The sensitivity to Λ enters through ε1 only.

Since the free parameter space is four-dimensional, it is
impossible to graphically depict the CL regions around the
best-fitting point. Nevertheless, we can quote the marginal-
ized intervals—the one-dimensional projections of the con-
fidence region—for each parameter. In our case, the margin-
alized intervals of the 95 % CL region read4

12 ≤ g′′

−0.013 ≤ �L ≤ 0.006

−0.006 ≤ �R ≤ 0.056

(70)

when Λ = 1 TeV and p ≥ 0 is assumed. The value of p

is restricted only very mildly by the considered data. The
whole physically motivated interval 0 ≤ p ≤ 1 belongs to
the marginalized interval of the 95 % CL region. The change
of the cut-off scale to Λ = 2 TeV alters only the marginal-
ized interval for �R,

−0.005 ≤ �R ≤ 0.041, (71)

and leaves all other conclusions basically intact. Let us note
that the limit g′′ ≥ 12 is implied by the restriction 0 ≤ x ≤
0.056.

Since the value of p can be motivated by theory, e.g. by
the models of the partial compositeness, it might be useful to
depict a three-dimensional cut of the four-dimensional 95 %
CL region for some fixed value of p. We choose the best
value of p = 0.209 for Λ = 1 TeV, see Eq. (68). The ob-
tained three-dimensional allowed region of the parameters
x, �L, and �R is shown in Fig. 5. Only the g′′ ≤ 30 part of
the region is shown in the graph. The region is not restricted
in g′′ from above.

It is certainly interesting to see how the best-fitting val-
ues of the free parameters would change if some of the pa-
rameters are fixed, presumably by theoretical assumptions.
Actually, even if there were no theoretical presumption for
fixing the value of a particular parameter by studying plots
where some of the free parameters are fixed ahead better un-
derstanding of behavior of the full four-parameter fit can be
achieved. One just has to be careful when interpreting such
graphs; e.g., in assigning a correct backing to a set of param-
eter values. Having said that, in Fig. 6 we show the best-fit
values of x (p) when the values of p (x) have been fixed
beforehand. Of course, �L and �R are the remaining free
parameters in the fit. Thus, d.o.f. = 5 − 3 = 2 in this case.

The contour dashed lines in Fig. 6 connect the points
with the same backings in the fits by free parameters �L

and �R if both x and p are fixed beforehand. In this case,
d.o.f. = 5−2 = 3. The χ2

min values for various combinations

4 The restriction on p �R derived from the LHC measurement of Wtb

vertex [66] reads −0.40 ≤ p �R ≤ 0.46 when assuming �L = 0.

Fig. 5 The p = 0.209 cut of the 95 % CL allowed region of the pa-
rameters {g′′,�L,�R,p} when Λ = 1 TeV. The 2D projections of the
allowed region to (g′′,�L), (g′′,�R), and (�L,�R) planes are also
shown (Color figure online)

of fixed g′′ and p are shown in Fig. 7. We can see that the
best backing for the fits is getting less pronounced as g′′ ap-
proaches 30 from below. More specifically, while backings
of the fits with different p’s can differ by several orders of
magnitude when g′′ � 20, the backing for g′′ = 30 changes
between 10 and 50 % as p crawls along the 〈0;1〉 interval.

The best-fit values of �L and �R for the given g′′ and p

can be read off of the graphs in Fig. 8. Besides, the contours
connecting the (g′′,p) points with the same backings are
shown there, too. Table 1 lists explicitly some of the best-fit
values of �L and �R corresponding to the assortment of
fixed g′′ and p values.

Eventually, in Fig. 9 we show the allowed CL regions
for the fits around some selected combinations of g′′ and
p parameters considered also in Table 1. In particular, we
display contours for g′′ = 20 and three different values of
p. Note that the backings for different values of p ∈ 〈0;1〉
when g′′ ≈ 20 do not change significantly (see Figs. 7 and
8). The backings for g′′ = 20, Λ = 1 TeV, and p = 0, 0.5,
and 1 are about 10, 5, and 1 %, respectively. Since �L is
predominantly related to a different observable (Γb) than
�R and p (ε1, Γ (B → Xsγ )), it is not unexpected that the
changes in p affect �R only. In all three displayed cases the
95 % C.L. allowed interval for �L reads (−0.012,0.003).
The 95 % C.L. allowed interval for �R is (0.007,0.039)

when p = 0. It shrinks to �R ∈ (0.000,0.008) when p = 1.
The effect of altering g′′ and/or Λ is illustrated in Fig. 10.

There, the 95 % C.L. allowed regions in the (�L,�R) pa-
rameter space when p assumes the values 0.10, 0.14, and
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Fig. 6 The graphs of the best-fit values of p (red solid line) and g′′
(blue dashed line) as functions of beforehand fixed values of, respec-
tively, g′′ and p. The remaining fitting parameters are �L and �R.
The gray dotted contours intersect the curves at points with 1, 5, 10,

15, 20, and 25 % backings (d.o.f. = 2). The intersection of the dashed
blue and solid red curves possesses a 30 % backing. The left and right
panels correspond to Λ = 1 TeV and Λ = 2 TeV, respectively (Color
figure online)

Fig. 7 χ2
min of the fit by �L and �R as a function of the fixed param-

eters g′′ and p for Λ = 1 TeV. The labels on the r.h.s. axis indicate the
backings for d.o.f. = 3 (Color figure online)

Table 1 The best-fit values of �L and �R found in the fits for var-
ious fixed values of g′′ and p when Λ = 1 TeV. The backing shown
corresponds to d.o.f = 5 − 2 = 3

Fixed Best fits χ2
min Backing (%)

g′′ p �L �R

15 0.10 −0.0042 0.0336 4.94 17.6

20 0 −0.0038 0.0229 6.18 10.3

20 0.14 −0.0038 0.0231 2.81 42.2

20 0.5 −0.0042 0.0101 7.65 5.4

20 1 −0.0045 0.0046 11.77 1.1

25 0.18 −0.0037 0.0181 2.44 48.6

30 0.2 −0.0036 0.0157 2.42 49.1

0.18 are shown. These are the p values with the high-
est backings for g′′ = 15, 20, and 25, respectively. The
corresponding best-fit �L and �R, χ2

min’s and backings
are shown in Table 1. The allowed regions are shown
for the cut-off scales Λ = 1 TeV and Λ = 2 TeV. As
far as the allowed regions are concerned, �L falls within

(−0.012,0.004), independently of the other parameter val-
ues. For Λ = 1 TeV, the �R limits read (0.018,0.049) when
g′′ = 15, (0.009,0.037) when g′′ = 20, and (0.005,0.032)

when g′′ = 25. For Λ = 2 TeV, the �R limits read
(0.014,0.036) when g′′ = 15, (0.007,0.028) when g′′ = 20,
and (0.004,0.024) when g′′ = 25. Having the data preferred
values of the LE Lagrangian parameters, we can evaluate
the strengths of the direct interaction vertices of the vec-
tor resonance triplet with the top and bottom quarks. For
that sake, we will recall the vertices of the vector res-
onance triplet with the top and bottom quarks that have
been derived in [56]. In the gauge boson flavor basis they
read

cV tt
L = √

2cV tb
L = −cV bb

L = −bLg′′/4,

cV tt
R = −bR g′′/4,

√
2 cV tb

R = −p bR g′′/4,

−cV bb
R = −p2 bL g′′/4.

Of course, in the mass eigenstate basis these terms must be
supplemented with the contributions from the gauge boson
mixing. Recall that the mixing-induced interactions are pro-
portional to 1/g′′ and thus represent minor corrections. We
choose to evaluate the direct couplings at the best-fit val-
ues of the free parameters �L, �R, and p when g′′ = 20
and Λ = 1 TeV (2 TeV), i.e. −0.0038 (−0.0039), 0.0231
(0.0166), and 0.14 (0.20), respectively. Since the existing
data restrict only the combinations of bL,R and λL,R , we
will assume that λL,R = 0. The obtained coupling values are
shown in Table 2. If λ’s are allowed to vary, we expect that
the best-fit couplings can double or reduce by half without
being accused of fine-tuning conspiracy between bL,R’s and
λL,R’s.

In some models of partial fermion compositeness the
masses of the SM fermions are related to the product of com-
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Fig. 8 The contours (black solid lines) connecting the (g′′,p) points
with the same backings in the fit by free parameters �L and �R. The
backing values shown on the contours correspond to d.o.f. = 3. The
graphs also contain the grid from which the best-fit values of �L (red
dot-dashed) and �R (blue dashed) for each given pair of fixed values

(g′′,p) can be read off. The numbers attached to the grid lines are 103

times the actual values represented by the lines. The left and right pan-
els display the Λ = 1 TeV and Λ = 2 TeV cases, respectively (Color
figure online)

Fig. 9 The 90 % C.L. (solid line), 95 % C.L. (dashed line), and 99 %
C.L. (dotted line) allowed regions in the (�L,�R) parameter space.
The regions are derived from the two-parameter fit by �L and �R for

g′′ = 20, Λ = 1 TeV, and (a) p = 0, (b) 0.5, and (c) 1. The best-fit
values of �L and �R are indicated by the dots

positeness ε
f
L,R of the left and right chirality [32, 51, 52, 88].

The same compositeness factors govern the strength of the
couplings of the new strong resonances to the fermions.
Naively, we can relate these considerations with the tBESS
parameters as follows:

ε
t,b
L ∝ bL, εt

R ∝ bR, εb
R ∝ pbR. (72)

Then

mb

mt

= εb
Lεb

R

εt
Lεt

R

= p. (73)

This example illustrates how the tBESS parameters can be
related to and fixed by predictions of specific models. In

this particular case, the predicted value of p is about 0.03.
This is quite away from the best fit p � 0.2 found in our
analysis. However, the best value of p is not restricted
very tightly by the analyzed data; p = 0.03 is still within
the 95 % CL region of the best fit by the four parame-
ters.

If we fix p = 0.03 as predicted by some models with the
partial fermion compositeness then the best values of the re-
maining free parameters are g′′ = 24, �L = −0.004, and
�R = 0.020 when Λ = 1 TeV. Since χ2 = 4.79, the back-
ing of this fit is about 9 %. If we assume Λ = 2 TeV then
the numbers change as follows: g′′ = 25, �L = −0.004,
�R = 0.014, and χ2 = 5.06, therefore the backing is about
8 %.
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Fig. 10 The 95 % C.L. allowed regions in the (�L,�R) parameter
space derived from the same fit as in Fig. 9 except for the values of
the fixed parameters. The solid contours correspond to Λ = 1 TeV, the
dashed ones to Λ = 2 TeV. The values of the fixed parameters g′′ and

p are, respectively, (a) 15 and 0.10, (b) 20 and 0.14, and (c) 25 and
0.18. The best-fit values of �L and �R are indicated by the dot and
cross for Λ = 1 TeV and Λ = 2 TeV, respectively

Table 2 The couplings of the vector triplet to top/bottom quark ver-
tices when λL,R = 0 corresponding to the best-fit values of �L, �R,
and p when g′′ = 20

Λ g′′bL/4 g′′bR/4 pg′′bR/4 p2g′′bR/4

1 TeV −0.0190 0.1155 0.0162 0.0023

2 TeV −0.0195 0.0830 0.0166 0.0033

5 Conclusions

We have formulated and studied the effective Lagrangian
for description of phenomenology of new scalar and vector
resonances which might result from new strong physics be-
yond the SM. Following the often used and studied approach
the ESB sector of the effective Lagrangian has been based
on the SU(2)L × SU(2)R → SU(2)L+R non-linear sigma
model while the scalar resonance has been introduced as the
SU(2)L+R singlet and identified with the newly discovered
125-GeV boson. The vector resonance has been built in as
the SU(2)L+R triplet employing the hidden local symme-
try approach. Throughout the paper we have assumed the
vector resonance mass at the bottom of the TeV scale. No
other non-SM fields have been considered in our effective
Lagrangian.

Within this general framework we have invoked a special
pattern of interactions between the vector resonances and the
SM fermions. Beside the gauge boson mixing induced inter-
actions the symmetry of the Lagrangian admits the direct
interactions of the vector triplet to the SM fermions. Moti-
vated by experimental as well as theoretical considerations
we have opted for the pattern where the vector resonance
couples directly to the third quark generation only. The cou-
plings are chiral-dependent and the interaction of the right
top quark can differ from that of the right bottom quark.

Similar interaction patterns can be found in various recent
extensions of the SM including extra-dimensional and com-
posite scenarios.

We have analyzed the tree-level unitarity of the gauge bo-
son scattering amplitudes to estimate the applicability range
of our effective Lagrangian. In particular, we have been in-
vestigating how the presence of both, scalar and vector, res-
onances affects the unitarity restrictions. Adding the vector
resonance triplet tends to improve the unitarity when the
coupling of the scalar to the gauge fields, a, is lower than
its SM value, a = 1. For a > 1 the presence of the vector
triplet further lowers the unitarity limit. In general, the uni-
tarity holds in the regions of a and g′′ that are also preferred
by experiment. Recall that g′′ is the vector resonance triplet
gauge coupling.

We have also analyzed the experimental limits on the free
parameters of the vector resonance triplet under the assump-
tion of the SM couplings for the scalar resonance. This was a
simplifying assumption that allowed us to focus on the vec-
tor resonance parameters before any more complex and so-
phisticated investigation would be undertaken. The assump-
tion is in agreement with the current experimental findings
about the new 125-GeV boson. The results found in our
analysis could also be considered as an approximation of
the situation when the scalar resonance parameters slightly
differ from their SM values.

Since LHC measurements’ vertices are not restrictive
enough, we have calculated the preferred values and CL
intervals for the vector resonance couplings from the low-
energy observables only. Namely, we have fitted five observ-
ables, ε1, ε2, ε3, Γb , and BR(B → Xsγ ), parameterized by
four free parameters, g′′, �L = bL − 2λL, �R = bR − 2λR ,
and p. When the cut-off scale Λ = 1 TeV the best-fit values
read g′′ = 29, �L = −0.004, �R = 0.016, and p = 0.209
with χ2/d.o.f. = 2.40/1 which corresponds to the 12 %



Eur. Phys. J. C (2013) 73:2577 Page 15 of 17

backing. The marginalized intervals of the 95 % CL re-
gion for individual parameters read g′′ ≥ 12, −0.013 ≤
�L ≤ 0.006, −0.006 ≤ �R ≤ 0.056. The marginalized in-
terval for p includes whole physically motivated interval
0 ≤ p ≤ 1. Note that while the best-fit value of g′′ is some-
what above the naive perturbativity limit the perturbativity
region overlaps with the found restriction on g′′. Recall that
the direct vector resonance coupling to the left top-bottom
quark doublet is proportional to bLg′′ and the direct cou-
pling to the right top quark is proportional to bRg′′. With
respect to the latter, the couplings of the right bottom quark
to the charged and neutral vector resonances are diminished
by p and p2, respectively. The parameters λL,R parameter-
ize the non-SM couplings of the EW gauge bosons allowed
by the symmetry. With the low-energy measurements only
one cannot obtain limits on the b and λ parameters sepa-
rately.

The best-fit value of p found in our analysis seems to
support the assumption of some models of partial fermion
compositeness that the new strong physics resonances cou-
ple stronger to the right top quark than to the right bot-
tom quark. Unfortunately, when g′′ is set close to its most
preferred value then any p within the 〈0;1〉 interval has
comparable experimental support. Therefore, while the low-
energy data seems to point in the right direction any strong
statements about the preferred value of p would be prema-
ture at this point. Unless the vector resonance is discov-
ered directly, further progress in the LHC measurements
of the Ztt and Wtb vertices is needed to improve limits
on this and other parameters of the studied effective La-
grangian.
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Appendix A: Experimental values

In our analyses we have used the experimental values of the
epsilon pseudo-observables obtained from a fit to all LEP-I
and SLD measurements including the combined preliminary
measurement of the W -boson mass [89]:

ε
exp
1 = (+5.4 ± 1.0) × 10−3, (74)

ε
exp
2 = (−8.9 ± 1.2) × 10−3, (75)

ε
exp
3 = (+5.34 ± 0.94) × 10−3, (76)

ε
exp
b = (−5.0 ± 1.6) × 10−3, (77)

with the correlation matrix

ρε =

⎛

⎜⎜
⎝

1.00 0.60 0.86 0.00
0.60 1.00 0.40 −0.01
0.86 0.40 1.00 0.02
0.00 −0.01 0.02 1.00

⎞

⎟⎟
⎠ . (78)

The value of the Z → bb̄ decay width

Γ
exp
b = (0.3773 ± 0.0013) GeV (79)

has been obtained from the experimental values [90]:

BR(Z → bb̄)exp = (0.1512 ± 0.0005), (80)

Γtot(Z)exp = (2.4952 ± 0.0023) GeV. (81)

The correlations between Γb and ε1,2,3 have been neglected.
For the branching fraction of B → Xsγ we have used the

world average [91] (CLEO, Belle, BaBar):

BR(B → Xsγ )exp = (3.55 ± 0.26) × 10−4. (82)

We have considered no correlations between BR(B → Xsγ )

and any of the observables ε1, ε2, ε3,Γb .
Below we will complete the list of numerical values that

have been used in the calculations of this paper:

α(0) = 1/137.036, (83)

α
(
M2

Z

) = 1/128.91, (84)

αs

(
M2

Z

) = 0.1184, (85)

GF = 1.166364 × 10−5 GeV−2, (86)

mb = 4.67 GeV, (87)

mt = 172.7 GeV, (88)

MZ = 91.1876 GeV, (89)

Mh = 125 GeV. (90)

Then, using Eq. (35) the numerical value of s2
0 is

s2
0 = 0.2311. (91)

Appendix B: Some anomalous couplings

Here we show the anomalous couplings found in the for-
mulas (63) and (66) for the loop contributions ε

vec(1)
1 and

BR(B → Xsγ ), respectively. They read:

κWtb
L = h(x; s0)

(
1 − �L

2

)
− 1, (92)

κWtb
R = h(x; s0)

p �R

2
, (93)

κZtt
L = −1

2
�L − 4

3
s2

0 �k(x; s0), (94)

κZtt
R = +1

2
�R − 4

3
s2

0 �k(x; s0), (95)

κZbb
L = +1

2
�L + 2

3
s2

0 �k(x; s0), (96)

κZbb
R = −p2

2
�R + 2

3
s2

0 �k(x; s0), (97)
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where �k(x; s0) is given in Eq. (49) and

h(x; s0) = s0

sθ

√
1 + 4s2

θ x2

1 + x2
. (98)

The x power expansion of this expression at x = 0 reads

h(x; s0) = 1 − s2
0 �k(x; s0) +O

(
x4)

= 1 − 0.430x2 − 0.405x4 + · · · . (99)
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