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We introduce the top-BESS model, which is the effective description of the strong electroweak

symmetry breaking with a single new SUð2ÞLþR triplet vector resonance. The model is a modification

of the BESS model in the fermion sector. The triplet couples to the third generation of quarks only. This

approach reflects a possible extraordinary role of the top quark in the mechanism of electroweak

symmetry breaking. The low-energy limits on the model parameters found provide hope for finding

sizable signals in the LHC Drell-Yan processes as well as in the s-channel production processes at the ILC.

However, there are regions of the model parameter space where the interplay of the direct and indirect

fermion couplings can hide the resonance peak in a scattering process even though the resonance exists

and couples directly to top and bottom quarks.
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I. INTRODUCTION

Despite the great success of the standard model (SM) [1]
one essential component of the theory remains a puzzle:
it is the actual mechanism behind the electroweak symme-
try breaking (ESB). Spontaneous breaking of electroweak
symmetry accompanied by the Higgs mechanism is the
way to reconcile the massive gauge bosons with the prin-
ciple of gauge invariance. The introduction of the Higgs
complex doublet scalar field of a nonzero vacuum expec-
tation value to the electroweak theory serves as a bench-
mark hypothesis for the mechanism. A direct consequence
of this hypothesis is the presence of the scalar Higgs boson
in the particle spectrum of the SM, not observed as of
yet, though.

Nevertheless, there is a host of candidates for alternative
extensions of the SM that offer their own mechanisms of
ESB. If the Large Hadron Collider (LHC) does not dis-
cover the SM Higgs boson, ESB could originate from
strongly interacting new physics. In this scenario the sym-
metry breaking is triggered by new nonperturbative forces
which form bound states of new elementary particles. The
bound states would appear in the particle spectrum as new
resonances. Typical representatives of this scenario are the
technicolor model (TC) [2] and its extensions [3–5].

More recent extra-dimensional theories [6] predict
the Kaluza-Klein towers of new resonances of which the
lowest lying resonances might be discovered at the LHC.
The attractiveness of this development is strengthened
by Maldacena’s conjecture [7] on the dual-description
relation between the extra-dimensional weakly interacting
theories and the strongly interacting models in four
dimensions.

Obviously, all the alternative extensions must converge
to the SM without Higgs when pre-LHC energies are
considered. Facing this plethora of hypotheses it is desir-
able to develop unifying descriptions of their low-energy
phenomenologies. For this purpose, the formalism of
effective Lagrangians is very suitable. The effective
Lagrangians can accommodate new particles predicted
by the extensions. The new particles are not only a
by-product of a particular ESB mechanism but they will
be needed to tame the model’s unitarity if the Higgs boson
below 1 TeV is not found [8].
In this paper we introduce the top-BESS model

(tBESS)—the modified version of the BESS (breaking elec-
troweak symmetry strongly) model [9]. The basic ideas of
the tBESS model were formulated already in [10]. Both
models describe a new SUð2Þ vector boson triplet that
can represent the spin-1 bound states of hypothetical new
strong interactions. They are effective descriptions of
strong Higgsless ESB based on the SUð2ÞL � SUð2ÞR �
Uð1ÞB�L � SUð2ÞHLS global symmetry of which the
SUð2ÞL �Uð1ÞY � SUð2ÞHLS subgroup is also a local sym-
metry. ‘‘HLS’’ stands for the hidden local symmetry [11],
which is an auxiliary gauge symmetry introduced to accom-
modate the SUð2Þ triplet of vector resonances. Beside the
triplet, the models contain only the observed SM particles.
The BESS and tBESS models are gauge equivalent to

the nonlinear sigma model on the SUð2ÞL � SUð2ÞR=
SUð2ÞLþR coset space with the SUð2ÞLþR vector triplet
added in the way introduced by Weinberg [12].
The BESS model also corresponds to the simplest

version of the five-dimensional Higgsless model in the
deconstructed picture of three lattice sites and the
SUð2ÞL � SUð2Þ �Uð1ÞY gauge symmetry, when direct
couplings between SM fermions and new vector bosons
are introduced [13]. The four-site Higgsless model based on
the SUð2ÞL � SUð2Þ1 � SUð2Þ2 �Uð1ÞY gauge symmetry
[14] corresponds to the degenerated BESS model [15].
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In the tBESS model we modify the direct interactions of
the vector triplet with fermions. While in the BESS model
there is a universal direct coupling of the triplet to all
fermions of a given chirality, in our modification we admit
direct couplings of the new triplet-to-top and bottom
quarks only. Our modification is inspired by the specula-
tions about a special role of the top quark (or the third
quark generation) in the mechanism of ESB [16,17]. The
large top mass is surprisingly close to the ESB scale:

mt � v=
ffiffiffi
2

p
. This suggests that mt could be generated by

the same mechanism as MW and MZ, i.e., by the same
strong interactions which are also responsible for ESB. If
this were the case, we would expect the new triplet to
couple significantly to the weak gauge bosons as well as
to the top quark. This happens, for example, for the vector
�T resonance of the extended technicolor [3].

On the other hand, the mechanism behind the top mass
could differ from the ESB mechanism. Thus, it can be
represented by yet another sector of new strong interactions
introduced just for that sake, e.g. the topcolor of the topcolor
assisted technicolor [5], where �T couples only weakly to
the top quark. The neutral component of the new vector
triplet can also mimic couplings of a Z0 spin-1 resonance
[18,19] which has large couplings to the top and bottom
quarks, vanishing couplings to W, Z, and very small cou-
plings to fermions of the first two generations. The authors
of [18,20,21] studied the effective description of the situ-
ation when the third quark generation couples extraordinar-
ily to the new strong resonances, scalar and vector ones,
under some simplifying assumptions. They also studied
various processes as probes of the resonances.

In the tBESS model, we take the possible chirality
dependence of the triplet-to-top/bottom coupling into ac-
count multiplying the SUð2ÞHLS gauge coupling g00 by the
bL and bR parameters for the left and right fermion dou-
blets, respectively. In addition, we can disentangle the
triplet-to-top-quark right coupling from the triplet-to-
bottom-quark right coupling. This breaks the SUð2ÞR sym-
metry which is broken by the SM interactions, anyway. For
this sake, we have introduced a free parameter, 0 � p � 1.
The p parameter can weaken the strength of the triplet-to-
bottom-quark right coupling. However, the SUð2ÞL sym-
metry does not allow us to do the same splitting for the left
quark doublet.

There are two more invariant terms introduced in the
tBESS effective Lagrangian when compared to the BESS
model. They are multiplied by additional free parameters,
�L and �R. While the � terms do not have a significant
impact on the behavior of the model at energies around the
mass of the vector triplet, they do influence the low-energy
limits for its parameters. Namely, the presence of � terms
helps to relax the low-energy limits for the fermion
parameters.

In the tBESS model the vector triplet is introduced
as a gauge field which results in the mixing of the triplet

with the electroweak gauge bosons. Consequently, the
indirect—mixing-induced—interactions of the vector trip-
let with fermions appear on the scene. For the light fermi-
ons this is the only way they can interact with the vector
triplet in the tBESS model. Of course, the interactions are
suppressed by the elements of the mixing matrix.
Since the indirect couplings are suppressed by the mix-

ing factors, it does not have to seem worthwhile to study
the tBESS model in processes where the vector resonances
couple to light fermions. We suggest that despite this naive
expectation it is not necessarily so.
There are regions of the parameter space where the

interference of the direct and indirect couplings suppresses
or even zeros a particular top/bottom decay channel of the
vector triplet. Consequently, the resonance peak might not
be visible in a particular experiment even though the new
vector triplet exists.
This paper is organized as follows. In Sec. II we intro-

duce the tBESS effective Lagrangian. While Sec. II A re-
calls the details of the gauge boson and ESB sectors that
are shared with the BESS model, in Sec. II B our modifi-
cations of the fermion sector are explained. In Sec. III the
basic properties of the tBESS model are discussed. Besides
the vector resonance decay widths, the unitarity and low-
energy limits for the model are derived in Secs. III B and
III C, respectively. In Sec. III D the effect of suppressing
the partial decay widths of the vector triplet for some
values of the parameter space is discussed. In Sec. III E
we illustrate the impact of the suppression on eþe� pro-
cesses. We also suggest that it might be feasible to use the
light fermion enabled processes at the ILC and the LHC
(Drell-Yan) to study the tBESS model. Section IV contains
our conclusions followed by appendices.

II. THE TOP-BESS MODEL

The top-BESS effective Lagrangian can be split in three
parts:

LtBESS ¼ LGB þLESB þLferm; (1)

whereLGB describes the gauge-boson sector including the
SUð2ÞHLS triplet, LESB is the scalar sector responsible
for spontaneous breaking of the electroweak and hidden
local symmetries, and Lferm is the fermion Lagrangian of
the model. The individual terms will be elaborated on in
the subsections below. Of course, the SM Lagrangian, up
to the Higgs doublet, must be a low-energy approximation
of LtBESS.

A. The SUð2ÞHLS vector triplet Lagrangian

We start with reviewing the gauge-field and scalar sec-
tors of the tBESS model which are—except for the used
notations—identical with those of the original BESS
model [9]. It contains six unphysical real scalar fields,
would-be Goldstone bosons of the model’s spontaneous
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symmetry breaking. Thus, naturally, the sector provides the
energy scale v of ESB.

Beside the SM gauge fields Wa
�ðxÞ and B�ðxÞ there is

the SUð2ÞHLS gauge triplet ~V� ¼ ðV1
�; V

2
�; V

3
�Þ introduced

in the model. Under the �glob � SUð2ÞlocHLS group, where

� ¼ SUð2ÞL � SUð2ÞR, it transforms as

V� ! hyV�hþ hy@�h; (2)

where hðxÞ 2 SUð2ÞlocHLS and V� ¼ i g
00
2 V

a
��

a. The 2� 2

matrices ~� ¼ ð�1; �2; �3Þ are the SUð2Þ generators.
The gauge-boson Lagrangian LGB is composed of the

Lagrangians for the individual gauge bosons

LGB ¼ LW þLB þLV; (3)

LW ¼ 1

2g2
TrðW��W

��Þ; (4)

LB ¼ 1

2g02
TrðB��B

��Þ; (5)

LV ¼ 2

g002
TrðV��V

��Þ; (6)

with the field strength tensors

W�� ¼ @�W� � @�W� þ ½W�;W��; (7)

B�� ¼ @�B� � @�B�; (8)

V�� ¼ @�V� � @�V� þ ½V�;V��; (9)

where W� ¼ igWa
��

a, B� ¼ ig0B�Y are SUð2ÞL and

Uð1ÞY gauge fields.
To generate the gauge-boson masses, the six real scalar

fields ’a
LðxÞ, ’a

RðxÞ, a ¼ 1, 2, 3, are introduced as parame-
ters of the � group elements in the exp form

�ð ~’L; ~’RÞ ¼ diagð�ð ~’LÞ; �ð ~’RÞÞ 2 �; (10)

where ~’ ¼ ð’1; ’2; ’3Þ, �ð ~’Þ ¼ expði ~’ ~� =vÞ 2 SUð2Þ
and v is the scale of ESB. The � matrix transforms1

linearly under �glob � SUð2ÞlocHLS:

�ð ~’L; ~’RÞ ! G �� �HðxÞ; (11)

where G ¼ diagðgL; gRÞ, HðxÞ ¼ diagðhðxÞ; hðxÞÞ, gL;R 2
SUð2ÞL;R, h 2 SUð2ÞHLS. The scalar fields couple to the

gauge bosons in the form given by the ½SUð2ÞL �Uð1ÞY �
SUð2ÞHLS�loc invariant Lagrangian

LESB ¼ �v2

2
½Trð ��?

�Þ2 þ �Trð ��k
�Þ2�; (12)

where � is a free parameter and ��?
� and ��k

� are SUð2ÞL�R

and SUð2ÞLþR projections of the gauged Maurer-Cartan

1-form ���

���ð ~’L; ~’RÞ ¼ �yð ~’L; ~’RÞ �D��ð ~’L; ~’RÞ; (13)

��k;?
� ð ~’L; ~’RÞ ¼ 1

2½ ���ð ~’L; ~’RÞ � ���ð ~’R; ~’LÞ�: (14)

The projections have a block-diagonal form

��k;?
� ¼ diagð �!k;?

� ;� �!k;?
� Þ; (15)

where the expressions for �!k;?
� in terms of �’s can be

inferred from Eqs. (10), (13), and (14). The covariant
derivative D�� reads

D��ð ~’L; ~’RÞ ¼ @��þX� ���� � V�; (16)

where X� ¼ igWa
�T

a
L þ ig0B�Y, V� ¼ i g

00
2 V

a
�T

a,

Ta
L ¼ diagð�a; 0Þ, T3

R ¼ diagð0; �3Þ, Ta ¼ diagð�a; �aÞ,
Y ¼ T3

R þ 1
2 ðB� LÞIð4Þ, Ið4Þ ¼ diagð1; 1; 1; 1Þ, and B, L

denote the baryon and lepton numbers, respectively.
It can be shown that all the six scalar fields can be

transformed away by an appropriate gauge transformation.
Thus they are unphysical. Namely, the scalar triplet ~� ¼
ð ~’L þ ~’RÞ=2 can be gauged away by the SUð2ÞlocHLS trans-

formation hðxÞ ¼ �ð ~�Þ, leaving us with the pseudoscalar
triplet ~	 ¼ ð ~’L � ~’RÞ=2. The gauge transformation turns
the Lagrangian (12) into the gauged nonlinear sigma model
on the SUð2ÞL � SUð2ÞR=SUð2ÞLþR coset space. The trip-
let ~	 plays a role of the Goldstone bosons which supply
masses to the electroweak gauge bosons through the Higgs
mechanism. The SUð2ÞHLS vector triplet enters the result-
ing nonlinear sigma model Lagrangian in the way intro-
duced originally by Weinberg [12].
To obtain the masses of the electroweak gauge bosons as

well as of the new vector resonances their mass matrix has
to be diagonalized. The eigenstate transformation matrices
of the neutral and charged gauge-boson sectors, ON and
OC, transform the mass eigenstates to the flavor eigenstates

W3

B

V3

0
BB@

1
CCA

flavor

¼ ON

A

Z

V0

0
BB@

1
CCA

mass

; (17)

W�

V�

 !
flavor

¼ OC
W�

V�

 !
mass

: (18)

Note that X� ¼ ðX1 � iX2Þ= ffiffiffi
2

p
where X ¼ W, V. In the

limit MW� , MZ 	 MV0 which is equivalent to the condi-
tion g 	 ffiffiffiffi

�
p

g00, the mixing matrices read2

1Transformation properties of the Lagrangian composing var-
iables are summarized in Appendix A.

2We are not showing exact formulas for the mass matrices in
this paper. These can be found in the papers on the original BESS
model [9]. Nevertheless, in the process calculations we have
used the exact formulas.
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ON ¼
g0=G g=G �g=g00
g=G �g0=G �g0=g00

2 gg0
Gg00

g2�g02
Gg00 1

0
B@

1
CA; (19)

OC ¼ 1 �g=g00
g=g00 1

� �
; (20)

where G ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
. In the same limit the gauge masses

can be approximated by the following formulas:

MW� ¼ vg

2

�
1� g2

2g002

�
; (21)

MZ ¼ vG

2

�
1� ðg2 � g02Þ2

2g002G2

�
; (22)

MV� ¼
ffiffiffiffi
�

p
vg00

2

�
1þ g2

2g002

�
; (23)

MV0 ¼
ffiffiffiffi
�

p
vg00

2

�
1þ G2

2g002

�
: (24)

Of course, the mass of the photon A is zero.

B. Fermion Lagrangian

In our approach, we modify the interactions of the new
vector triplet with fermions. No new fermions beyond the
SM have been introduced in the model. The modification
singles out the new physics role of the third quark genera-
tion, and of the top quark, in particular. Hence, we call
the obtained effective Lagrangian the top-BESS model, or
tBESS in short. It can be split in two parts:

Lferm ¼ LSM
ferm þLtBESS

ðt;bÞ ; (25)

where LSM
ferm is the SM part of the fermion Lagrangian

and LtBESS
ðt;bÞ contains the modification concerning the third

quark generation.
The fermions are grouped into six SUð2ÞL doublets and

six SUð2ÞR doublets c a
h, a ¼ 1; . . . ; 6 where h ¼ L, R

denotes the chirality of the fields. Under �glob � SUð2ÞlocHLS

c a
L;R ! gL;Rc

a
L;R; gL;R 2 SUð2ÞL;R: (26)

The leptonic and light quark doublets are indexed by the
a ¼ 1; . . . ; 5 range, a ¼ 6 is reserved for the top-bottom
doublet. The useful construct for building the fermion
Lagrangian is the matrix


a
h 
 
ð ~’h; c

a
hÞ ¼ �yð ~’hÞ � c a

h: (27)

Under �glob � SUð2ÞlocHLS it transforms as


a
L;R ! hyðxÞ � 
a

L;R; hðxÞ 2 SUð2ÞlocHLS: (28)

The ½��Uð1ÞB�L�glob � SUð2ÞlocHLS invariant Higgsless

effective Lagrangian describing the SM physics of the
fermion doublets reads

LSM
ferm ¼ X6

a¼1

½ILc ðc a
LÞ þ IRc ðc a

RÞ � Imassðc aÞ�; (29)

where

ILc ðc a
LÞ ¼ i �c a

Lð@þW þBÞc a
L; (30)

IRc ðc a
RÞ ¼ i �c a

Rð@þ BÞc a
R; (31)

and

Imassðc aÞ ¼ �c a
LUMfc

a
R þ H:c:; (32)

where Mf is a 2� 2 diagonal matrix with the masses of

the upper and bottom fermion doublet components on its
diagonal and U ¼ �ð ~	Þ � �ð ~	Þ ¼ expð2i ~	 ~� =vÞ. Note that
while ILc and IRc are invariants of ½��Uð1ÞB�L�glob �
SUð2ÞlocHLS as well as of ½SUð2ÞL �Uð1ÞY�loc, the Imass

terms break SUð2ÞR ! Uð1ÞR3.
The additional ½��Uð1ÞB�L�glob � SUð2ÞlocHLS and

½SUð2ÞL �Uð1ÞY�loc invariants read (h ¼ L; R)

Ihbðc hÞ ¼ i �
h½@þ V þ ig0BðB� LÞ=2�
h; (33)

and

Ih�ðc hÞ ¼ i �
h �!
?
h

¼ i �
h½!? þ ð�y
LW�L � �y

RB
R3�RÞ=2�
h; (34)

where BR3 ¼ ig0B�3, and !? ¼ ð�y
L@�L � �y

R@�RÞ=2.
Note that the Ihb terms contain the direct interactions of

the vector triplet with fermions as opposed to the � invar-
iants where there is no such interaction. However, the �
terms do modify the couplings of the electroweak gauge
bosons with fermions. The � terms were not present in the
original BESS formulation [9]. Even though their values do
not have a significant impact on the observed signals at the
triplet peaks, they do influence the low-energy limits for
the fermion parameters.
We use the invariants (33) and (34) to build the fermion

sector of the tBESS model as follows:

LtBESS
ðt;bÞ ¼bL½ILb ðc 6

LÞ�ILc ðc 6
LÞ�þbR½IRb ðPc 6

RÞ�IRc ðPc 6
RÞ�

þ2�LI
L
� ðc 6

LÞþ2�RI
R
� ðPc 6

RÞ: (35)

The matrix P ¼ diagð1; pÞ, where 0 � p � 1, serves to
disentangle the direct interaction of the vector triplet with
the right top quark from the interaction with the right
bottom quark. While p ¼ 1 leaves the interactions equal,
the p ¼ 0 turns off the right bottom quark interaction
completely and maximally breaks the SUð2ÞR part of the
Lagrangian symmetry down to Uð1ÞR3.
If Iðc Þ is an SUð2ÞR invariant then IðPc Þ is a Uð1ÞR3

invariant due to the fact that Uð1ÞR3 transformations are
generated by the �3 matrix which commutes with the P
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matrix. Hence, after inserting the P matrix into LtBESS
ðt;bÞR ,

the global symmetry of the overall theory gets lowered
down to SUð2ÞL �Uð1ÞR3 �Uð1ÞB�L � SUð2ÞV . The
gauge symmetry ½SUð2ÞL �Uð1ÞY � SUð2ÞV�loc is main-
tained, though. As will be seen in the next section the lower
the p value is set the more relaxed the low-energy limits on
the allowed values of bR and �R are.

While the LGB þLESB part of the tBESS Lagrangian
(1) is parity invariant, this is not generally true for Lferm.
Under the parity transformation, ILb $ IRb and IL� $ �IR� .
Therefore, the new physics interactions in the fermion
Lagrangian (35) break parity, unless p ¼ 1, bL ¼ bR,
and �L ¼ ��R.

For the sake of comparison between the original BESS
model [9] and the top-BESS model the following remark
should be made: our parameterization of the Lagrangian
(35) differs from the BESS model parameterization of the
direct triplet-to-fermions interactions usually used by the
authors of [9]. Should we follow the approach of [9] our
parameterization would change in the following way:

bh ! bh
1þ bh

; �h ! 1

2

�h

1þ bh
: (36)

The parameterization we have used in (35) is linear in b and
avoids introducing the artificial singularity at bh ¼ �1.
In addition, the intergeneration universality in the

triplet-to-fermion direct couplings forced the authors of
the BESS model to switch off the direct couplings to the
right fermion fields. In the leptonic sector of the BESS
model the direct right interaction is absent if there are no
right-handed neutrinos. In its hadronic sector the direct
right interaction contributes to KL � KS mass difference
which results in a strict upper bound on the interaction [9].
The tBESS model avoids these limits by admitting the
direct interactions with the third generation quarks only.
In the gauge where the six scalar fields ~� and ~	 are

transformed away the fermion Lagrangian LSM
ferm þLtBESS

ðt;bÞ
takes on a more transparent structure as far as the individ-
ual interaction vertices are concerned. The top-bottom
sector reads

Lðt;bÞR ¼ LSM
ðt;bÞR þ �tR

�
� 1

2
�RgW

3 þ 1

2
ðbR þ �RÞg0B� 1

2
bR

g00

2
V3

�
tR þ �bR

�
1

2
p2�RgW

3 � 1

2
p2ðbR þ �RÞg0B

þ 1

2
p2bR

g00

2
V3

�
bR �

�
�tR

�
1ffiffiffi
2

p p�RgW
þ þ 1ffiffiffi

2
p pbR

g00

2
Vþ

�
bR þ H:c:

�
; (37)

Lðt;bÞL ¼ LSM
ðt;bÞL þ �tL

�
1

2
ðbL � �LÞgW3 þ 1

2
�Lg

0B� 1

2
bL

g00

2
V3

�
tL þ �bL

�
� 1

2
ðbL � �LÞgW3 � 1

2
�Lg

0Bþ 1

2
bL

g00

2
V3

�
bL

þ
�
�tL

�
1ffiffiffi
2

p ðbL � �LÞgWþ � 1ffiffiffi
2

p bL
g00

2
Vþ

�
bL þH:c:

�
; (38)

where the gauge fields are considered in the flavor eigen-
state basis. The SM parts of (37) and (38) read

LSM
ðt;bÞR ¼ ið�tR@tRÞþ ið �bR@bRÞ�2

3
g0ð�tRBtRÞþ1

3
g0ð �bRBbRÞ;

(39)

LSM
ðt;bÞL ¼ ið�tL@tLÞ þ ið �bL@bLÞ � 1

6
g0ð�tLBtLÞ

� 1

6
g0ð �bLBbLÞ � 1

2
gð�tLW3tLÞ þ 1

2
gð �bLW3bLÞ

� 1ffiffiffi
2

p gð�tLWþbL þ H:c:Þ: (40)

Of course, to complete physics of the top and bottom
quarks we have to add the mass terms mtð�tRtL þ H:c:Þ
and mbð �bRbL þ H:c:Þ.

To obtain the full fermion Lagrangian terms for the
remaining fermions must be added. The light quark terms
LSM

ðu;dÞL;R and LSM
ðc;sÞL;R can be obtained from (39) and (40)

by simply replacing the ðt; bÞ fields with ðu; dÞ or ðc; sÞ. The
lepton terms LSM

ð�‘;‘
�ÞL;R , where ‘ ¼ e, �, �, read

L SM
ð�‘;‘

�ÞR ¼ i ��R@�R þ i �‘R@‘R þ g0ð �‘RB‘RÞ; (41)

L SM
ð�‘;‘

�ÞL ¼ i ��L@�L þ i �‘L@‘L þ 1

2
g0ð ��LB�LÞ

þ 1

2
g0ð �‘LB‘LÞ � 1

2
gð ��LW

3�LÞ

þ 1

2
gð �‘LW3‘LÞ � 1ffiffiffi

2
p gð ��LW

þ‘L þ H:c:Þ:
(42)

The mass terms for the light quarks and leptons possess the
same form as those of the top and bottom quarks.
When the fermion interaction Lagrangians are expressed

in terms of the mass eigenstates of the electroweak gauge
bosons the electric charge e can be defined in the vertex of
photon with charged fermions. It implies the relation of the
electric charge to the gauge couplings g, g0, and g00�

1

g

�
2 þ

�
1

g0

�
2 þ

�
1

g00=2

�
2 ¼

�
1

e

�
2
: (43)
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Obviously, once the gauge-boson fields are expressed in
the mass eigenstate basis the mixing generated interactions
of the vector triplet with fermions will appear on the scene.
Typically, these indirect interactions will be suppressed by
the mixing matrix factors. Despite of the suppression, the
LHC and ILC processes based on the indirect couplings
might provide sizable signals of the tBESS physics as will
be discussed in Sec. III E.

III. PHENOMENOLOGY

A. Properties of the SUð2ÞHLS vector triplet

The masses of the SUð2ÞHLS vector triplet depend on
the three gauge couplings g, g0, g00, the free parameter �,
and the ESB scale v. Of these, g00 and � parameterize
new physics beyond the SM. In the limit when g and
g0 are negligible compared to g00 the masses of the
neutral and charged resonances are degenerate, MV ¼ffiffiffiffi
�

p
g00v=2. If higher order corrections in g=g00 are admit-

ted the mass splitting occurs such that MV0 >MV� .
However, the relative difference is less than one per
mil if g00 � 8.

The values of MV below 1 TeV seem to be disfavored
by the CDF and D0 experiments which have not found a
significant excess over the SM expectations in the mea-
sured Mt�t spectrum in this mass range [22].

While the masses of the vector triplet are identical in
the both, tBESS and BESS, models, the total decay
widths of the resonances are different. For corresponding
values of the b parameters of the two models, the tBESS
model total widths are smaller than the BESS model
ones. It is caused by the differences in the triplet-to-
fermion couplings. Recall that while in the BESS model
the vector triplet couples directly to all fermions, in the
tBESS model it couples directly to the third quark
generation only.

The partial decay widths of the vector resonances to the
electroweak bosons, V0 ! WþW�, V� ! W�Z, in the
tBESS model are the same as in the BESS model. They
read

�V0!WþW� ¼ g2VWW

192	

MV0

x4W
ð1� 4x2WÞ3=2ð1þ 20x2W þ 12x4WÞ;

(44)

�V�!W�Z ¼ g2VWZ

192	

MV�

y2Wy
2
Z

½1� ðyW þ yZÞ2�3=2

� ½1� ðyW � yZÞ2�3=2f½1� ðyW þ yZÞ2�
� ½1� ðyW � yZÞ2� þ 12ðy2W þ y2Z þ y2Wy

2
ZÞ�g;
(45)

where xW;Z ¼ MW;Z=MV0 , yW;Z ¼ MW;Z=MV� . The cou-

plings gVWW and gVWZ are shown in Table I.

The partial decay widths of the vector resonances to the
third quark generation read3

�V0!t�t ¼
MV0

8	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x2t

q
f½ðgLVttÞ2 þ ðgRVttÞ2�ð1� x2t Þ

þ 6gLVttg
R
Vttx

2
t g; (46)

�V0!b �b ¼
MV0

8	
½ðgLVbbÞ2 þ ðgRVbbÞ2�; (47)

�Vþ!t �b ¼
MV�

8	
½ðgLVtbÞ2 þ ðgRVtbÞ2�ð1� y2t Þð2� y2t � y4t Þ=2;

(48)

where xt ¼ mt=MV0 and yt ¼ mt=MV� . The mass of the
bottom quark has been neglected.
The mixing of the gauge bosons generates indirect cou-

plings of the tBESS vector triplet to all fermions. Thus
the vector resonances can also decay to the light fermions,
other than top and bottom quarks. Of course, the indirect
couplings are suppressed by the relevant mixing factors
supplied by the mixing matrices (19) and (20). The light
fermion decay widths can be calculated using the generic
massless fermion formulas

�V0!f �f ¼ NC

MV0

24	
½ðgL

Vf �f
Þ2 þ ðgR

Vf �f
Þ2�; (49)

�V�!f �f0 ¼ NC

MV�

24	
ðgL

Vf �f0 Þ2; (50)

TABLE I. Some couplings of the top-BESS vector triplet.

gVWW �ðgOC2
11O

N
13 þ g00

2 O
C2
21O

N
33Þ

gVWZ �ðgOC
11O

C
12O

N
12 þ g00

2 O
C
21O

C
22O

N
32Þ

gLVtt gLVuu þ 1
2 ½ðbL � �LÞgON

13 þ �Lg
0ON

23 � bL
2 g00ON

33�
gRVtt gRVuu � 1

2 ½�RgO
N
13 � ðbR þ �RÞg0ON

23 þ bR
2 g00ON

33�
gLVbb gLVdd � 1

2 ½ðbL � �LÞgON
13 þ �Lg

0ON
23 � bL

2 g00ON
33�

gRVbb gRVdd þ p2

2 ½�RgO
N
13 � ðbR þ �RÞg0ON

23 þ bR
2 g00ON

33�
gLVtb gLVud þ 1ffiffi

2
p ½ðbL � �LÞgOC

12 � bL
2 g00OC

22�
gRVtb � pffiffi

2
p ½�RgO

C
12 þ bR

2 g00OC
22�

h ¼ L h ¼ R notes

ghV�� � 1
2 ðgON

13 � g0ON
23Þ 0 � ¼ �e, ��, ��

ghV‘‘
1
2 ðgON

13 þ g0ON
23Þ g0ON

23 ‘ ¼ e, �, �

ghVuu � 1
2 ðgON

13 þ 1
3 g

0ON
23Þ � 2

3 g
0ON

23 ghVuu ¼ ghVcc

ghVdd
1
2 ðgON

13 � 1
3g

0ON
23Þ 1

3g
0ON

23 ghVdd ¼ ghVss

ghV�‘ � 1ffiffi
2

p gOC
12 0 ‘ ¼ e, �, �

ghVud � 1ffiffi
2

p gOC
12 0 ghVud ¼ ghVcs

3To simplify the analysis the Cabibbo-Kobayashi-Maskawa
mixing is ignored throughout the paper.
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where NC is the number of colors the final state is summed
over. The chiral couplings are summarized in Table I.

The total decay widths of the tBESS resonances ob-
tained by summing up over all decay channels are shown
in Fig. 1. The � parameters were set to zero. As can be seen
in Table I, the dominant coupling terms depend solely on
b parameters, while the contributions of the �-dependent
terms are always suppressed by the nondiagonal elements
of the mixing matrices ON and OC. Hence, the effect of
nonzero �’s on the decay widths is negligible if the pa-
rameters assume the values dictated by the low-energy
limits (for the limits, see Sec. III C).

Note that the contours of the constant decay widths in
the bL-bR space form ellipses with the eccentricities de-
pending on the value of the p parameter. When p ¼ 1 the
ellipses approach a circular shape. In the case of the
charged resonance the total decay width is not a function
of bR and p separately. It rather depends on the product of
the two parameters. Finally, the ellipses/circles do not have
their centers, which indicate the points of the minimal
widths, at the origin of the parametric space. The centers
are shifted from the origin but the shift decreases with
growing g00. The centers reach the origin when g00 ! 1.

Except for the special regions of the parametric space
which will be discussed in Sec. III D the vector triplet
predominantly decays to the electroweak gauge bosons,
W� and Z, and/or to the third generation of quarks.
Figures 2 and 3 depict the branching ratios of the neutral

and charged resonances, respectively, for the gauge boson
and top/bottom quark channels. As expected, the quark
decay channels prevail when the moduli of b parameters
assume sufficiently large values. Details depend on other
parameters of the model, g00, MV0 , and p. While the decay
widths to the third generation of quarks grow with
g00—namely, they are proportional to g002—the decay
widths to W� and Z are proportional to 1=g002.

B. Tree-level unitarity constraints

The SM without the Higgs is not renormalizable and its
amplitudes violate unitarity at some energy. In particular,
when the longitudinal electroweak gauge-boson scattering
is considered the partial wave tree-level unitarity is vio-
lated at

ffiffiffi
s

p ¼ 1:7 TeV [23]. The result has been obtained
using the Equivalence Theorem [24,25] approximation
of the Wþ

L W
�
L , ZLZL, W

�
L ZL, and W�

L W
�
L scattering by

the pionic scattering amplitudes of the SUð2ÞL � SUð2ÞR=
SUð2ÞLþR nonlinear sigma model. The matrix of the a0
partial waves of all the scattering amplitudes was formed,
where the zero index at a0 indicates the J ¼ 0 angular
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FIG. 1 (color online). The total decay width contours of the
tBESS vector triplet. The upper row displays the V0 decay
widths (numeric labels in GeV) in the ðbL; bRÞ plane for the
cases of p ¼ 1 (black circlelike contours) and p ¼ 0 (red elliptic
contours). The bottom row displays the V� decay widths (in
GeV) in the ðbL; pbRÞ plane. The graphs in the left and right
columns correspond to g00 ¼ 10 and g00 ¼ 20, respectively. All
graphs have been plotted for MV0 ¼ 1 TeV and �L ¼ �R ¼ 0.
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FIG. 2. The branching ratio of V0 to the WþW� (white), t�t
(dark gray), and b �b (light gray) decay channels in the ðbL; bRÞ
plane for the cases of p ¼ 0 (upper row) and p ¼ 1 (bottom
row). In all graphs g00 ¼ 20, MV0 ¼ 1 TeV, and �L ¼ �R ¼ 0.
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momentum. The S-matrix unitarity implies that the maxi-
mum of the moduli of the a0 matrix eigenvalues should be
less than 1 [8]. This condition leads to the energy restric-
tion cited above.

To obtain the unitarity constraints for the tBESS model
an analogical procedure has been applied. The only differ-
ence is that the Wþ

L W
�
L , ZLZL, W

�
L ZL, and W�

L W
�
L scat-

tering amplitudes can also proceed through the exchange
of the new resonances. It modifies the amplitude expres-
sions so that they read

MðWþ
L W

�
L ! Wþ

L W
�
L Þ ¼ Aðs; t; uÞ þ Aðt; s; uÞ;

MðZLZL ! ZLZLÞ ¼ 0;ffiffiffi
2

p
MðWþ

L W
�
L ! ZLZLÞ ¼ Aðs; t; uÞ;

MðW�
L ZL ! W�

L ZLÞ ¼ Aðt; s; uÞ;ffiffiffi
2

p
MðW�

L W
�
L ! W�

L W
�
L Þ ¼ Aðt; s; uÞ þ Aðu; t; sÞ;

Aðs; t; uÞ ¼ s

4v2
ð4� 3�Þ þ �M2

V

4v2
½fðt; uÞ þ fðu; tÞ�;

(51)

where

fðt; uÞ ¼ u� s

t�M2
V þ iMV�V

: (52)

The eigenvalues of the a0 matrix based on the electro-
weak gauge-boson scattering amplitudes are functions offfiffiffi
s

p
, g00, and MV , when the � parameter has been replaced

by MV using the leading order of the mass relation (24),
MV ¼ ffiffiffiffi

�
p

vg00=2. No couplings to fermions are assumed,
therefore

�V ¼ MVg
002

768	
�2 ¼ M5

V

48	v4

1

g002
: (53)

Then, constraining the maximal eigenvalue modulus by
unity results in the unitarity constraints depicted in
Fig. 4. If we require that the tBESS model amplitudes
unitarity holds up to the same energy as for the Higgsless
SM—1.7 TeV—the g00 parameter is restricted only from
below. This bottom limit depends onMV : g

00 * 3, 6, and 9,
whenMV ¼ 1:0, 1.7, and 2.3 TeV, respectively. The tBESS
model amplitudes can satisfy the unitarity also at higher
energies, if g00 is properly restricted from above. One has to
remember that nonrenormalizability of the model implies
the upper limit on the applicability of the Equivalence
Theorem [25]. It holds for E � 4	v � 3 TeV. This sets
the upper energy limit on any conclusions inferred from the
use of the theorem.

It seems reasonable to demand that the unitarity con-
straint exceeds the mass of the SUð2ÞHLC resonance. If we
require that the unitarity of the model holds up to the
energy of E ¼ 1:5MV we obtain the unitarity allowed
region in the �V-MV plane shown in Fig. 5. The lines of

constant g00 values are superimposed over the unitarity
allowed region. The graph suggests that the MV values
which can be accommodated by the tBESS effective model
cannot exceed 2.26 TeV. If we wish to avoid wide reso-
nances, we should stay at somewhat lower masses, say, up
to about 1.5 TeV. Recall that no decays to fermions have
been involved when obtaining these conclusions.
The expression (51) is identical with that of the BESS

model except for the decay width �V of the vector reso-
nance. To reflect the impact of the fermion sector on the
tBESS vector boson decay widths the third quark genera-
tion decay channels assuming no gauge-boson mixing and
the massless quarks will be added. In this approximation,
the neutral tBESS resonance decays to Wþ

L W
�
L þ b �bþ t�t

and the charged one to W�
L ZL þ t �b=�tb. Thus, the total

decay width (53) will be modified as follows:
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FIG. 4. The tree-level unitarity constraints from the gauge-
boson scattering obtained for various masses of the vector triplet:
MV ¼ 1 TeV (solid line), 1.7 TeV (dashed), 2.3 TeV (dotted).
The horizontal dashed-dotted line is the Higgsless SM unitarity
limit of 1.7 TeV. The shaded area indicates the region where the
unitarity holds. No couplings to fermions are assumed.
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FIG. 5. The allowed values (the shaded region) of the width
and mass of the vector resonance assuming the unitarity satura-
tion at or above E ¼ 1:5MV . The lines crossing the plane
indicate the points of the fixed values of g00. No couplings to
fermions are assumed.

GINTNER, JURÁŇ, AND MELO PHYSICAL REVIEW D 84, 035013 (2011)

035013-8



�V ¼ MVg
002

768	
½�2 þ 12�2ðbL; bR; pÞ�; (54)

where � ¼ ½b2L þ b2Rð1þ p4Þ=2�1=2 for the neutral reso-

nance and � ¼ ½b2L þ b2Rp
2�1=2 for the charged one. In this

approximation the decay width (54) is not a function of
�’s. As argued in Sec. III A, dropping the � dependence has
negligible consequences.

The vector resonance decay width makes the unitarity
constraint sensitive to the parameters of the fermionic
sector which are neatly packed into the � parameter. The
unitarity constraints based on the electroweak gauge-boson
scattering amplitudes should be supplemented by the uni-
tarity constraints derived from the scattering amplitudes
with the participation of the top and bottom quarks. We
have not performed the analysis in this paper. Thus, at this
moment, we cannot tell whether and how the inclusion of
the quark scattering processes influences the conclusions
about the unitarity constraints. Nevertheless, the question
of unitarity of top/bottom quark scattering amplitudes
in similar situation to ours was treated in the literature
[20,21]. Their conclusions seem to suggest that the fermion
amplitudes do not place stricter constraints than those
based on the ww ! ww scattering.

Considering the decay width (54) we have obtained the
tBESS unitarity constraints which depend also on the �
parameter. There is an ambiguity which of the � parame-
ters should be used in the calculations of the unitarity
limits. Both, neutral and charged, resonances contribute
to the processes under consideration. This problem is a
side effect of merging the contributions of two different
Lagrangians, the nonlinear sigma model and the gauged
tBESS model, into one decay width and as such it has no
rigorous solution. It is the price to be paid for the shortcut
we took in order to estimate the tBESS model behavior.

In our calculations, the neutral resonance � parameter
has been used. The ðg00; �Þ-dependent constraints for vari-
ous values of MV can be seen in Fig. 6. It appears that for
MV below 2 TeV the � dependence of the unitarity limit is

negligible certainly when � is below about 0.2 and the
limits of Fig. 4 remain valid. On the other hand, the higher
the mass of the vector resonance, the stronger the effect of
�. However, the higher values of � are disfavored by the
low-energy limits which will be discussed in Sec. III C.
When we ask that the tBESS model unitarity is not

violated below 1:5MV we obtain the allowed regions in
the ð�; g00Þ plain. They are depicted in Fig. 7 for different
values of MV . For MV ¼ 1 TeV there is the rectangular
quarter-plane, not bound from above, neither on the right-
hand side, of the allowed values of the � and g00 parame-
ters. When the mass grows the allowed area shrinks and
splits into discontinued regions. The upper bound on g00
appears once the required unitarity constraint crosses
1.7 TeV which corresponds to the Higgsless SM unitarity
limit plotted in Fig. 4. This occurs at MV0 ¼ 1:13 TeV.
Raising further the mass value results in the splitting of the
allowed area into two separate regions. Even higher mass
value causes the lower region to disappear. Of course, the
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FIG. 6 (color online). The tree-level unitarity constraints from the gauge-boson scattering obtained for various masses of the
tBESS vector triplet. The decays to the third quark generation are included in evaluation of the vector resonance width; � ¼
½b2L þ b2Rð1þ p4Þ=2�1=2. The graphs correspond to MV ¼ 1 TeV, 2 TeV, and 2.3 TeV (from left to right).
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critical mass values as well as all the constraints displayed
in Fig. 7 are subject to the condition that the unitarity
saturation takes place at least 50% above the mass of the
resonance. Changing the condition would alter the pre-
sented results.

When there were no fermion interactions, the unitarity
saturation at 1:5MV , or higher, restricted the maximal
vector resonance mass, for which the effective description
works, to amount to MV ¼ 2:26 TeV. On the other hand,
Fig. 7 suggests that fermion interactions with � � 1:6 can
bring masses higher than 2.26 TeV back into the game.
Because of the circumstances mentioned above this result
should be supplemented by the analysis which would in-
clude the top/bottom scattering before reaching final con-
clusions on this matter.

C. Low-energy limits

The tBESS model is an effective description of a high-
energy extension of the Higgsless SM. The existing elec-
troweak precision data (EWPD) restrict tBESS induced
deviations from the SM at the relevant energies. This
experimental input results in the low-energy limits on the
parameters of tBESS.

To obtain these limits we have to derive the low-energy
Lagrangian by integrating out the vector triplet of the
tBESS Lagrangian. It proceeds by taking the limit
Mtriplet ! 1, while g00 is finite and fixed, and by substitut-

ing the equation of motion for the triplet fields obtained
under these conditions.

The low-energy tBESS Lagrangian has been related to
several independent measurements. First of all, to restrict
g00 as well as the b and � parameters, we have used the
standard epsilon method for the EWPD [26,27]. Another
independent limit on g00 has resulted from the D0 measure-
ment of p �p ! WZX [28]. Independently, the b and �
parameters have been restricted by the measurement of
the B ! Xs� decay [29].

Let us briefly review the epsilon analysis. There are four
epsilon parameters 1, 2, 3, b which summarize the
input of the SM weak physics at loop level and non-SM
weak physics at tree and loop levels. The epsilons are
extracted from data independently of mt, mH, and new
physics parameters. Both 1 and 3 are obtained from
the measurements of A‘

FB and �ðZ ! ‘‘Þ. To obtain 2
the measurement of MW=MZ has to be supplemented. To
obtain b the measurement of �ðZ ! b �bÞ has to be added.
More details on deriving the low-energy limits from the
epsilon analysis can be found in Appendix B.

The EWPD limit on g00 can be obtained from the 3
parameter, using the relation4

3 ¼
�
g

g00

�
2 þ �SM3 ; (55)

where 3 ¼ 0:005 34� 0:000 94 is obtained from experi-
ment [30], and the value of �SM3 is the theoretical pre-

diction which depends on MH. Namely, �SM3 ¼ 0:005 89,
0.006 54, and 0.006 92, for MH ¼ 0:3, 1, and 2 TeV, re-
spectively. Thus, the mean value of 3 � �SM3 is negative

and the Eq. (55) has no solution for g00. Nevertheless, the
positive values of the difference are statistically admissible
if we assume its normal distribution with the standard
deviation taken from 3. Then, the probability that the
difference is positive amounts to 28%, 10%, and 5%,
when MH ¼ 0:3, 1, and 2 TeV, respectively. At the same
time these numbers indicate the confidence level of g00
taking on any value. The likelihood that the g00 value lies
anywhere below a given value g000 is depicted in Fig. 8.

While these numbers may seem low, there are some
points to be made in order to see the situation in proper
perspective. First of all, in the epsilon analysis, the ap-
proximation in which the tBESS loop-level contributions
to ’s are replaced with the SM MH-dependent loop-level
contributions plus the net tBESS loop-level contributions is
used. In addition, in the Eq. (55) the net tBESS loop terms,
which are not necessarily negligible against �SM3 , have not

been considered (see Table VI of Appendix B). Thus, it
might be possible that using more precise formulae would
significantly change the probability numbers shown above.
Secondly, in the original BESS model, 3 depends, be-

side g00, also on the universal fermion parameter b.
This dependency can compensate for the negativity of
3 � �SM3 . By turning off the direct coupling of the

vector triplet to the light fermions, as we have done in
the tBESS model, the dependency disappears and we face
the tension between the negativity of 3 � �SM3 and the

positivity of ðg=g00Þ2. Nevertheless, adding a new indepen-
dent direct interaction of the light fermions with the vector
triplet would be straightforward. It would be a natural
extension of the tBESS model which is in line with the
original motivation of the extraordinary role of the top
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FIG. 8 (color online). The probability that g00 lies anywhere
below a given value of g000 . It is based on 3 parameter and

depends on MH used for calculation of �SM3 . Plots for MH ¼
0:3 TeV (red dotted), 1 TeV (green dashed), and 2 TeV (blue
solid) are shown.4For details, see Appendix B, the Eq. (B7), and the related text.
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quark. A new parameter, thus introduced to the Eq. (55),
could compensate for the negativity of 3 � �SM3 in the

same way as the b parameter in the BESS model does.
The gauge coupling g00 can also be restricted by the

measurement of the gauge-boson self-interactions. In par-
ticular, the D0 measurement of p �p ! WZX puts limits on
the anomalous couplings of the effectiveWWZ vertex [28].
If the CP-invariant operators up to dimension four are
considered, there are two free parameters, gZ1 and �Z, in

the effective WWZ vertex [31]. In the tBESS model, the
two parameters coincide, gZ1 ¼ �Z, and depend on a single

non-SM parameter, namely g00. Note that this is different
from the BESS model where gZ1 (which, again, equals to

�Z) depends also on the universal couplings of the vector
triplet with fermions. The D0 measurements provide sepa-
rate limits on gZ1 and �Z. Since gZ1 ¼ �Z in the tBESS

model, we consider the stronger of these limits to derive
the restriction for g00. The obtained lower bound reads
g00 � 3:4 ð95%C:L:Þ.

The b and � parameters are restricted by the measure-
ment of B ! Xs�which puts limits on the anomalous �Wtb

R;L

parameters of the W�tR;LbR;L vertices [29,32]. In tBESS,

these anomalous couplings are functions of the model’s
parameters. It implies the low-energy limits on bL � 2�L

and bR þ 2�R for given values of g00 and p. The limits for
various values of p and g00 ¼ 10 are shown in Fig. 9. The
case of g00 ! 1 introduces a change not distinguishable in
the graph.

Both 1 and b parameters can provide independent
EWPD limits on the same combinations of b’s and �’s as
in the previous case. However, to the limits based on the b
parameter a qualification applies. The tBESS interactions
are more general than what is allowed by the restriction
imposed on the anomalous vector and axial-vector cou-
plings of the bottom quark in the definition of b [27]. The
definition assumes that these couplings are not independent
of each other. Thus, b can be used to derive the low-
energy limits on the tBESS fermion parameters under this

additional assumption only. In particular, the following
condition must hold: either p ¼ 0, or bR ¼ �2�R. As far
as the limits derived from 1 are concerned, no such
restrictions apply.
The intersections of the 1 and b based regions for

g00 ¼ 10 and 1, and p ¼ 0 are depicted5 in Fig. 10. The
cutoff scale � of the low-energy effective theory is rea-
sonable to be put equal to the mass of the vector resonance.
In the figure, the graphs for � ¼ 1 TeV and � ¼ 2 TeV
are displayed. The shaded areas of Fig. 10 lie completely
inside the region allowed by the B ! Xs� decay. Thus,
they can also be considered as the combined allowed
region of the epsilon and B ! Xs� methods when p ¼ 0.
If bR ¼ �2�R and p is arbitrary, the intersection of

the 90% C.L. regions of 1, b, and B ! Xs�, when
� ¼ 1 TeV, reads

�0:009 � bL � 2�L � 0:004: (56)

This interval is virtually independent of g00. When � ¼
2 TeV the regions have no common intersection at the
given confidence level and for any value of g00.
If neither p ¼ 0, nor bR ¼ �2�R, the low-energy re-

strictions are provided by 1 only as far as the epsilon
parameters are considered. The restrictions are represented
by the horizontal strips in Fig. 10.
In this case, the b-based restriction can be substituted

for by the low-energy limit obtained directly from the
measurement of the �ðZ ! b �bÞ decay employing
Eq. (11) of [27]. Details of the calculation can be found
in Appendix C.
In Fig. 11, the 90% C.L. regions based on 1,

�ðZ ! b �bÞ, and B ! Xs�, and their intersections are
shown. Various combinations of the p, g00, and � values
are considered. It can be seen that for some combinations
the intersections are restricted by the B ! Xs� measure-
ment. In some cases some combinations are excluded
completely; e.g. when p ¼ 1, g00 ¼ 10, � ¼ 2 TeV.
In Fig. 11, for the sake of comparison, the intersections

based on b are also shown. Even though they are not
identical with the �ðZ ! b �bÞ based contours for p ¼ 0,
they are reasonably close to each other.
There are no low-energy limits on the values of the b and

� parameters individually. Thus, in principle, b’s and �’s
can be tuned to any values if their sum/difference falls
within the allowed interval. However, if one does not wish
to admit a fine-tuning of the parameters, it is in place to add
some ad hoc restriction; say, the absolute values of the bL;R
or �L;R parameters should not be greater than 10 times the

size of the allowed interval for bL;R � 2�L;R. This way, the

fine-tuning would not go below 10%. For example, if we
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FIG. 9. The 90% C.L. B ! Xs� allowed regions of the b and �
parameters when g00 ¼ 10. The allowed regions form closed
elliptical bands; the darkest gray correspond to p ¼ 0, the
lightest to p ¼ 1, with p ¼ 0:5 in between. When p ¼ 0, only
parts of two parallel bands of an ‘‘infinite’’ ellipse can be seen.

5Actually, there are four distinct intersections of the allowed
regions. Only one of them is depicted in Fig. 10. The other three
regions are excluded by the B ! Xs� decay and/or allow too
large values of the fermion parameters to consider them reliable.
For more detailed discussion, see Appendix B.
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FIG. 11 (color online). The intersections of the 1 allowed regions (dotted lines) with the �ðZ ! b �bÞ allowed regions (dashed lines)
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intersections of all the regions for p ¼ 0 (the lightest gray), p ¼ 0:5 (middle gray), and p ¼ 1 (the darkest gray). The empty region
with the red solid boundary corresponds to the b based intersection taken from Fig. 10.
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apply this restriction to the limit for p ¼ 0, we obtain
jbLj � 0:13. Of course, at the same time the � parameters
must fall in the strip bL � 0:003 � 2�L � bL þ 0:010.

In the BESS model, as well as in many other models of
strong ESB and in the most common extra-dimensional
Higgsless theories, the new vector resonances must be
rather fermiophobic in order to satisfy the EWPD limits.
There are ways how to remove this restriction found in the
literature: e.g. the degenerated BESS model [15] and the
four-site Higgsless model [14]. The top-BESS model pro-
vides another alternative which does not suffer from this
restriction.

The parameters bL and bR correspond to the BESS
parameters b and b0 through the relations bL¼b=ð1þbÞ
and bR ¼ b0=ð1þ b0Þ. The authors of the BESS model
[9] used 3 to derive the low-energy limits for b [33]. We
have updated the limits for the BESS model using the same
epsilon values [30] as for deriving the limits of the tBESS
fermion parameters. When g00 ¼ 10, we have obtained

0:008 � b � 0:015 ð90%C:L:Þ: (57)

Thus, the limit on bL obtained by the combination of the
low-energy bounds and the no fine-tuning requirement
is significantly less restrictive, than the low-energy limit
for b.

In the BESS model the universal right fermion coupling
b0 is usually set to zero due to the reasons mentioned
before. In the tBESS model, the low-energy limits on bR
can be even less restrictive than those on bL when p
approaches zero.

D. The death valley effect

The interplay of the direct and indirect couplings of the
vector triplet with fermions can diminish or even zero a
particular top/bottom quark channel decay width of the
vector resonance for some nonzero values of the b parame-
ters. Thus, it might happen that even though the direct

couplings of the vector resonance to the top and/or bottom
quark are nontrivial the resonance will not decay through
the given quark channel. Or, the particular decay will be
suppressed below the value that would be implied by the
indirect couplings alone.
Figure 12 shows the area of the bL-bR parametric space

where the decay width of V0 ! t�t is equal to or lower than
the corresponding value generated by the indirect cou-
plings alone. We call this region the death valley (DV)
because that is where the resonance decay through the
particular decay channel deteriorates or even dies out.
The dot in the middle of the area indicates the parameter
values for which the partial decay width is equal to zero.
The DV shrinks and the zero width point moves to the
origin of the parametric space as g00 grows. The DV region
for t�t channel does not depend on p. Its dependence on �’s
can be neglected.
There are the EWPD contours superimposed over the

DV graphs in the figure to show which part of the allowed
parameter values overlaps with the DV. Recall that the low-
energy limits apply to the combination of b’s and �’s rather
than to the parameters alone. The low-energy limits de-
picted in Fig. 12 correspond to �L ¼ �R ¼ 0. By choosing
nonzero values for �L;R the low-energy contours get shifted

around the parameter space. There are acceptable values6

of �’s leading to both extrema—(a) no overlap, and (b) the
maximal overlap—of the DV and the low-energy allowed
regions.
The DV regions of the V0 ! b �b decay for MV0 ¼

1 TeV are shown in Fig. 13. In this case the DV region is
of elliptical shape and depends on p. When p ¼ 0 the DV
is an unbound strip in the bR direction. As p decreases
from 1 to 0 the bR coordinate of the zero width dot grows,
reaching infinite value for p ¼ 0. Since p ¼ 0 turns off
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FIG. 12 (color online). The death valley regions (shaded areas) of the V0 ! t�t decay for MV0 ¼ 1 TeV and g00 ¼ 10 (left) and
g00 ¼ 20 (right). The red dot indicates values for which the corresponding partial decay width is equal to zero. The low-energy allowed
region for �L ¼ �R ¼ 0, p ¼ 0, and � ¼ 1 TeV (solid line) is superimposed on the graphs.

6Acceptable in the sense of no more than 10% of the fine-
tuning of b’s and �’s.
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the bR coupling for any value of bR, the indirect interaction
of the vector triplet with the right bottom quark cannot
be compensated by its direct analogue. Therefore, the
V0 ! b �b decay width cannot be equal to zero for any finite
values of the b parameters when p ¼ 0. Nevertheless,
there will be the minimal value of the width at a fixed
value of bL and any value of bR.

Note that if g00 ¼ 10 the DV area is equal or larger than
the EWPD region. If we change the �L value of the left-
hand side graph of Fig. 13 to �L ¼ 0:006 the low-energy
contours get shifted to the right and find themselves inside
the DV’s. Thus, in this case the EWPD admit only bL;R
values which lie inside the DV.

The DV’s for the quark decay of the charged resonance,
V� ! t �b=�tb, are shown in Fig. 14. As in the case of the b �b
channel the DV depends on p. If p ¼ 0, its elliptical shape
turns into the bR-unbound strip. The position of the zero

width point does not depend on p, if p > 0. If p ¼ 0, the
zero width point turns into a straight line of a fixed bL value
and any bR value. As in the previous case, it is possible to
hide the low-energy allowed regions inside the correspond-
ing DV; �L ¼ 0:006 would make the job as it did in the
case of V0 ! b �b.

E. Scattering processes

The main goal of the construction and study of the
tBESS model is to provide an effective tool for the de-
scription and analysis of the possible experimental situ-
ation observed at the LHC and the ILC. Even though the
analysis of sensitivity of particular scattering processes to
the tBESS parameters is not within the scope of this paper
we would like to discuss two features of the tBESS model
which can prove important when such analysis will be
performed.
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FIG. 13 (color online). The death valley regions (shaded areas) of the V0 ! b �b decay for MV0 ¼ 1 TeV and g00 ¼ 10 (left) and
g00 ¼ 20 (right). The dark gray area corresponds to the DV of p ¼ 1, the medium gray area to p ¼ 0:5, and the light gray region to
p ¼ 0. The lower (p ¼ 1) and higher (p ¼ 0:5) red dots indicate the ðbL; bRÞ values for which the partial decay width is equal to zero.
The middle red line corresponds to the ðbL; bRÞ values of the minimal b �b decay width when p ¼ 0. The low-energy allowed region for
p ¼ 0, �L ¼ �R ¼ 0, and � ¼ 1 TeV is superimposed on the graphs.
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FIG. 14 (color online). The death valley regions (shaded areas) of the V� ! t �b=�tb decay for MV0 ¼ 1 TeV and g00 ¼ 10 (left) and
g00 ¼ 20 (right). The dark gray area corresponds to the DV of p ¼ 1, the medium gray area to p ¼ 0:5, and the light gray region to
p ¼ 0. The red dot (p ¼ 1 and p ¼ 0:5) and the red line (p ¼ 0) indicate the ðbL; bRÞ values for which the corresponding partial decay
width is equal to zero. The low-energy allowed region for p ¼ 0, �L ¼ �R ¼ 0, and � ¼ 1 TeV is superimposed on the graphs.
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1. Hiding the peak

The death valley effect can hide signals expected in
scattering processes. There might be new physics materi-
alized through the existence of the new vector resonances
as well as nonzero values of the b parameters, yet it does
not have to reveal itself in an experiment. In particular,
even if the tBESS resonances exist and couple to the third
quark generation we do not have to see a peak in the
scattering experiments for certain final states containing
top and/or bottom quarks. This would occur if the model
parameters happened to have their values inside the DV

region. More precisely, the region, in which the resonance
peak in a scattering process is lower than the peak due
to the indirect couplings to fermions, can slightly differ
from the DV region. It is due to the interference effects
between signal and nonsignal amplitudes of the process.
Nevertheless, we will not elaborate on this in this paper.
To illustrate the DV effect on the scattering amplitudes

we have plotted the cross sections for five processes:
e�eþ ! t�t=b �b=WþW� and u �d ! t �b=WþZ. The cross
sections are evaluated for MV0 ¼ 1 TeV and g00 ¼ 20 at
four different parameter space points (PSP) which are
specified in Table II. The points were chosen to demon-
strate how the tBESS resonance peak behaves if PSP lies
inside or outside the DV. Of course, the gauge-boson
processes are sensitive to the choice of PSP only through
the resonance decay width. The nonzero values of �L have
been chosen to shift the low-energy allowed region so that
it includes the given PSP. The cross section at the peak
region is not significantly affected by the � values, though.
The PSP ¼ 1 graph in Fig. 15 shows the cross sections

of the five processes when there is no direct coupling of the

TABLE II. Parameter space points (PSP) at which the cross
sections in Fig. 15 were calculated.

PSP p bL bR �L �R

1 0 0 0 0 0

2 0 �0:01 0.03 0 0

3 0 0.009 0.03 0.006 0

4 0 0.0098 0.0034 0.006 0
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FIG. 15 (color online). The cross sections of the e�eþ ! t�t=b �b=WþW� and u �d ! t �b=WþZ processes for MV0 ¼ 1 TeV and
g00 ¼ 20. The four graphs correspond to the four parameter space points specified in Table II. Each graph displays plots of all five
processes. From top to bottom: e�eþ ! WþW� (magenta), u �d ! WþZ (green), e�eþ ! t�t (black), u �d ! t �b (blue), e�eþ ! b �b (red).
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vector resonance to fermions. While there are clear 1 TeV
resonance peaks in the gauge-boson channels the top/
bottom channel processes exhibit only small peaks.

PSP ¼ 2 was chosen far away from the DV’s of all three
top/bottom channels. Thus we expect to see large 1 TeV
peaks in all five cross sections. Indeed, the PSP ¼ 2 graph
of Fig. 15 shows exactly that behavior.

PSP ¼ 3 lies at the bottoms of the DV’s for b �b and t �b
channels. On the other hand, for the t�t channel the PSP is
far away from the channel’s DV. In accordance with that
the PSP ¼ 3 graph in Fig. 15 shows the 1 TeV resonance
peak only in the e�eþ ! t�t cross section, other two top/
bottom final state graphs being flat.

PSP ¼ 4 is localized at the bottom of the DV’s of all
three top/bottom processes. Indeed, in their cross sections,
no 1 TeV peak can be found in the PSP ¼ 4 graph of
Fig. 15.

Note that since p ¼ 0 for all PSP’s bR-related couplings
are effectively set to zero in the processes e�eþ ! b �b and
u �d ! t �b.

2. Drell-Yan processes

The fundamental process for probing the mechanism of
ESB is the electroweak gauge boson (EWGB) scattering,
WW ! WW, where W ¼ W�, Z. No matter what is the
theory behind ESB, it must leave its footprints in all
processes containing WW ! WW as a part of their
Feynman diagrams. That is why major attention in the
literature has always been paid to the processes which
realize the EWGB scattering through WW fusion, either
at the LHC or at the ILC [34] (see also Ref. [16] and
references therein). Particularly, if there is a vector reso-
nance associated to the ESB sector, one would expect that
it strongly couples to the longitudinal components of the
massive electroweak gauge bosons and we should detect its
existence through these processes.

Beside the EWGB fusion processes, the processes with
the associated production of a resonance R, ee=qq ! RW,
where R is radiated of the final EW gauge boson, and
decays subsequently into the pair of EW gauge bosons,
R ! WW, can also probe the ESB sector.

The answer to the question how the ESB vector reso-
nance couples to the SM fermions is very much model-
dependent. There are many strong ESB models where the
EWPD, namely, the limits on the 3 parameter, suppress
the direct interactions of the new vector resonances with
fermions. For example, the BESS model vector triplet is
fermiophobic. Also, the most common Higgsless extra-
dimensional theories, including the three-site one [13],
are fermiophobic [14]. If this is the case, the experimental
search for the vector resonance is bound to the fusion and
associated production processes mentioned above.

In the case of nonfermiophobic models, like the degen-
erated BESS model [15] and the four-site Higgsless extra-
dimensional model [14], the stronger direct couplings to

fermions bring up new candidate processes for testing the
ESB vector resonances. To discover the new resonances
and test their relationship to fermions the scope of candi-
date processes can be widened to the EWGB fusion and the
associated resonance production where the EW gauge
bosons at one or both ends of resonance propagators are
replaced with fermions. This also includes the Drell-Yan
processes at the LHC, as well as the s-channel resonance
production at the ILC. Indeed, these processes were studied
in the literature [14,23] and found promising.
Processes where the new resonance interacts with top

quarks, in particular, do not only provide supplemental
opportunities to discover the new vector resonances, they
can also probe the relationship between ESB physics and
physics of the top quark [16,35]. Many papers focus on
processes with ww ! t�t scattering involved [36].
Because of the nonuniversality of its interactions with

the SM fermions the tBESS vector triplet does not fit to
either of the two categories mentioned above. The tBESS
model admits strong direct couplings to top and bottom
quarks and none to the light SM fermions. Of course,
there are the mixing-induced indirect couplings to the
light fermions which are suppressed. Thus, when searching
for candidate processes to probe the tBESS model one
would tend to avoid those where the vector triplet couples
to light fermions. However, the existing studies of the
vector resonances with nonuniversal couplings to fermions
[18,20,21] show that these naive expectations are not
always correct. At the LHC, the WW ! tt fusion process
is overwhelmed by the QCD background. On the other
hand, the Drell-Yan processes and the resonance associated
production with top/bottom quark final states appear de-
tectable. The Drell-Yan processes can compete because the
suppressed interactions of the resonance with light quarks
can be compensated for by their higher luminosities in
proton-proton collisions.
Our preliminary study [37,38] of sensitivity of the LHC

Drell-Yan processes to the tBESS resonances at MV0 ¼
1 TeV suggests that while pp ! t�tX=b �bX is overwhelmed
by the gluon-gluon background and thus insensitive to
the tBESS resonance, the pp ! t �bX=WþW�X=W�ZX
processes yield quite promising signals.
In this paper we do not aim to perform systematic

study of the tBESS model testing at either of the existing
or future colliders. Nevertheless, as an illustration, in
Fig. 16 we show the invariant mass distributions for the
final state particles of the pp ! t �bX=WþW�X=W�ZX
processes at the LHC. The collision energy is

ffiffiffi
s

p ¼
14 TeV and MV0 ¼ 1 TeV. Other tBESS parameters read
g00 ¼ 20, p ¼ 0:5, bL ¼ �0:072, bR ¼ 0:074. If �L ¼
�R ¼ �0:03 this PSP finds itself in the low-energy allowed
region of the tBESS parametric space, away from the DV’s
of all decay channels. The mass of the charged resonance is
MV� ¼ 999:84 GeV. The only cuts applied to all processes
exclude the forward and backward scattering angles for
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which their cosines are either below �0:99 or above
0.99. The Cabibbo-Kobayashi-Maskawa matrix mixing is
ignored in the calculations. The total cross sections ob-
tained under these conditions read

�ðt �bþ b�tÞ ¼ 4:18ð4:09Þ pb;
�ðWþZþW�ZÞ ¼ 10:75ð10:52Þ pb;

�ðWþW�Þ ¼ 31:85ð31:29Þ pb:
The values in the round brackets correspond to the SMwith
MHiggs ¼ 115 GeV. The cross sections of individual sub-

processes are shown in Table III. The CTEQ611 parton
distribution functions were used to obtain these results.

The vector resonance decay widths for the PSP at which
the pp processes were calculated are shown in Table IV.

Let us note that the pp ! ðt �bþ b�tÞX process is sensi-
tive to the direct fermion couplings through the V�tb
vertex, the pp ! ðWþZþW�ZÞX process is only sensi-
tive to g00 through the triple gauge vertex of V�W�Z, and
the pp ! WþW�X process is sensitive to the fermion
couplings through the V0bb vertex and to g00 through the
triple gauge vertex of V0WþW�. In the pp ! WþW�X
case the sensitivity to fermion couplings is only through
the b �b ! WþW� component which contributes just a
small fraction of the cross section. Nevertheless, this sub-
process contributes significantly to the resonance peak.
In the ILC s-channel production the resonance must be

produced through the annihilation of the light fermions
which is a disadvantage for this kind of process.
Nevertheless, Fig. 15 suggests that it might be worthwhile
to study sensitivity of the ILC e�eþ ! V0 ! 2 processes
with the electroweak gauge bosons or top/bottom quarks in
the final states. Our preliminary work [38,39] on this issue
further supports this hope.
All cross section calculations in this section were per-

formed at the tree-level using the COMPHEP software [40].
For that sake, we have implemented the tBESS Lagrangian
into the COMPHEP as one of its models.

IV. CONCLUSIONS

The effective Lagrangian, the so-called top-BESS
model, of an alternative scenario of ESB has been formu-
lated and investigated. It is the effective description of
beyond the SM hypotheses where new strong interactions
are responsible for ESB. The tBESS model singles out
the direct coupling of the vector triplet to the third
quark generation only. Therefore, it is a suitable effective
Lagrangian for theories where the top (and perhaps also
bottom) quark play an outstanding role in new physics
beyond the SM.
There is no direct coupling of the tBESS vector triplet

to the light SM fermions. Thus, the vector triplet can
couple to the light fermions only through indirect interac-
tions induced by the mixing of the vector triplet with the
electroweak gauge bosons.
The study of the electroweak gauge-boson scattering

implies that the no Higgs SM unitarity restriction of
1.7 TeV can be somewhat raised by the introduction of
the tBESS vector triplet for the limited choice of the
tBESS-free parameters only. For example, when MV0 ¼
1 TeV, the tBESS unitarity up to 1.7 TeV, at least, is

 (GeV)34m
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 (
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/G
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)
34

/d
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σ
d

-410
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FIG. 16 (color online). The invariant mass distributions for the
final state particles of the pp ! WþW�X (top red line), pp !
ðWþZþW�ZÞX (middle blue line), and pp ! ðt �bþ b�tÞX
(bottom black line) processes at the LHC for

ffiffiffi
s

p ¼ 14 TeV
and MV0 ¼1TeV, g00 ¼ 20, p¼0:5, bL¼�0:072, bR¼0:074,
�L ¼ �R ¼ �0:03. The thinner lines depict the SM predictions
assuming MHiggs ¼ 115 GeV.

TABLE III. The tree-level cross sections of individual subpro-
cesses contributing to the processes calculated in Fig. 16.
MHiggs ¼ 115 GeV is assumed for the SM.

pp ! t �bX=b�tX

� (pb) u �d c�s d �u s �c
tBESS 1.05 0.16 0.73 0.16

SM 1.02 0.15 0.72 0.15

pp ! WþZX=W�ZX

� (pb) u �d c�s d �u s �c
tBESS 2.63 0.45 1.84 0.45

SM 2.57 0.44 1.80 0.44

pp ! WþW�X

� (pb) u �u d �d s�s c �c b �b
tBESS 7.00 5.62 1.85 1.08 0.38

SM 6.88 5.52 1.81 1.06 0.37

TABLE IV. The partial decay widths of the vector resonance
triplet at MV0 ¼ 1 TeV, g00 ¼ 20, p ¼ 0:5, bL ¼ �0:072, bR ¼
0:074, �L ¼ �R ¼ �0:03.

V0 ! WþW� t�t b �b u �u d �d Total

Width (GeV) 5.29 8.98 5.79 0.007 0.004 20.09

Vþ ! WþZ t �b u �d Total

Width (GeV) 5.40 13.10 0.010 18.53
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guaranteed for g00 * 3 and for any values of the fermion
sector parameters bL, bR, �L, �R and p. The unitarity
allowed parameter region quickly shrinks if we require
the unitarity limit higher then 2 TeV. It seems that the
strong couplings of the vector triplet with fermions might
influence these conclusions. However, the analysis of the
top/bottom quark scattering amplitudes would be required
to settle this question. In addition, large values of the b and
� parameters are admissible only in the fine-tuning regime.

Confrontation of the tBESS model with the EWPD
results in the low-energy limits on the model’s parameters.
The 3 parameter can accommodate any value of g00 with
only quite low probability, e.g. 10% when MH is set to
1 TeV in approximating the loop contributions to 3.
Nevertheless, there are good reasons not to take these
numbers too seriously. For example, they can be altered
by adding a new direct interaction of the vector triplet with
light fermions to the tBESS model. There is also an inde-
pendent lower limit on g00 set by the D0 measurements of
theWWZ, g00 � 3:4 (95% C.L.), which plays no significant
role under the given circumstances.

The epsilon analysis combined with the B ! Xs�
measurement restricts the expressions bL � 2�L and
bR þ 2�R. The situation is complicated by the fact that
due to its definition b can be used to extract low-energy
limits only if p ¼ 0 or bR ¼ �2�R. To obtain the restric-
tions for more general case of the tBESS model, we have
used the measurements of the branching ratio for Z ! b �b
and the total decay width of the Z boson. There are no low-
energy limits on the individual b and � parameters.
However, if the fine-tuning of the b and � parameters
should not go below 10% then bL and �L might be as large
as about �0:1. Analogically, bR and �R can be as large as
about �0:7 when p ¼ 0 or about �0:08 when p ¼ 1.
These numbers are � dependent and, to a lesser extent,
g00 dependent, though.

If the values of the bL and bR parameters lie in the death
valley region, the top/bottom partial decay widths of the
vector resonances diminish below the no direct-coupling
value. It is a consequence of the interplay of the direct and
indirect fermion couplings of the vector triplet. If this
occurred the resonance peak in a process where V decays
to top and/or bottom quarks could disappear even though
the resonance exists and couples directly to the third quark
generation.

Our calculations suggest that there are acceptable values
of the tBESS parameters which can result in detectable
signals at the LHC and/or the ILC. In particular, despite
what would be the one’s first guess, it seems to be worth-
while to study the LHC Drell-Yan processes and the ILC
eþe� ! R processes with top/bottom quarks and EW
gauge bosons in their final states in order to probe the
top-BESS model. However, this is far from conclusive. It
would need to perform a more systematic study focused on
the process analysis. The next step in this direction might

include more systematic scan of the parametric space,
more realistic final states and cuts, and the inclusion of
the backgrounds, at least.
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APPENDIX A: TRANSFORMATION RELATIONS

The transformation relations of the basic mathematical
objects used to build the tBESS effective Lagrangian are
summarized in Table V. Recall that the weak hypercharge
Y ¼ T3

R þ ðB� LÞ=2, where T3
R is the third SUð2ÞR gen-

erator. Thus, when B� L ¼ 0 then Y ¼ T3
R 
 YR.

APPENDIX B: LOW-ENERGY LIMITS FROM
THE EPSILON ANALYSIS

In deriving the low-energy limits from the epsilon analy-
sis we follow the approach of [33].
The fermion Lagrangian describing the anomalous in-

teractions of the electroweak gauge bosons with the top
and bottom quarks reads

Lanom
ðt;bÞ ¼ LSM

ðt;bÞ �
X

h¼L;R

�
effiffiffi
2

p
s�

�Wtb
h ð�thWþbh þ H:c:Þ

þ e

2s�c�
½�Ztt

h ð�thZthÞ þ �Zbb
h ð �bhZbhÞ�

�
; (B1)

TABLE V. The transformation relations of the basic mathe-
matical objects used to build the tBESS effective Lagrangian.

Object Globala,c Localb,c

W� ¼ igWa
��

a gLW�g
y
L gLW�g

y
L þ gL@�g

y
L

B� ¼ ig0B�Y gRB�g
y
R B� þ gY@�g

y
Y

V� ¼ ig00Va
��

a=2 hyV�h hyV�hþ hy@�h
�L gL�Lh gLðxÞ�LhðxÞ
�R gR�Rh gYR

ðxÞ�RhðxÞ
U ¼ �L�

y
R gLUgyR gLðxÞUgyYR

ðxÞ
�!k;?
� hy �!k;?

� h hyðxÞ �!k;?
� hðxÞ

c L gBLgLc L gYðxÞgLðxÞc L

c R gBLgRc R gYðxÞc R


L ¼ �y
Lc L gBLh

y
L gYðxÞhyðxÞ
L


R ¼ �y
Rc R gBLh

y
R gBLðxÞhyðxÞ
R

aSUð2ÞL � SUð2ÞR �Uð1ÞB�L � SUð2ÞHLS
bSUð2ÞL �Uð1ÞY � SUð2ÞHLS
cgL 2 SUð2ÞL, gR 2 SUð2ÞR, h 2 SUð2ÞHLS, gY 2 Uð1ÞY ,
gBL 2 Uð1ÞB�L, and gYR

2 Uð1ÞY if B� L ¼ 0
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where �‘s parameterize the deviations from the SM

L SM
ðt;bÞ ¼ � 2

3
e�tAtþ 1

3
e �bAb� effiffiffi

2
p

s�
ð�tLWþbL þ H:c:Þ

� e

2s�c�

��
1� 4

3
s2�

�
ð�tLZtLÞ � 4

3
s2�ð�tRZtRÞ

�

þ e

2s�c�

��
1� 2

3
s2�

�
ð �bLZbLÞ � 2

3
s2�ð �bRZbRÞ

�
;

where electric charge e and sinus theta s� are defined as

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4	�ðMZÞ

q
; (B2)

s2�c
2
� ¼

ffiffiffi
2

p
e2

8GFM
2
Z

: (B3)

In the case of the tBESS model the � parameters read

�Wtb
L ¼ �

�
bL
2
� �L

�
ð1� hÞ � h;

�Wtb
R ¼ p

�
bR
2

þ �R

�
ð1� hÞ;

�Ztt
L ¼ �

�
bL
2
� �L

�
� 4

3
h;

�Ztt
R ¼

�
bR
2

þ �R

�
� 4

3
h;

�Zbb
L ¼

�
bL
2
� �L

�
þ 2

3
h;

�Zbb
R ¼ �p2

�
bR
2

þ �R

�
þ 2

3
h;

(B4)

and

h ¼ s2�
c2�

�
g

g00

�
2
; (B5)

where c2� ¼ c2� � s2�.
The Lagrangian (B1) can be confronted with the model

independent epsilon analysis of the electroweak precision
data [26,27]. The new physics tree-level contributions to
the epsilon parameters are functions of the �‘s. Beside that,
there are loop-level contributions �loops. Thus,

 ¼ tree þ �loops; (B6)

where the loop contributions are of two kinds: the SM ones
[41] and the new physics ones, �loops � �SM þ �NP.
We derive limits from the values of three epsilons—1, 3,
and b—including some radiative corrections as indicated
in Table VI.

The restriction on g00 can be obtained from 3. In the
case of tBESS

3 ¼
�
g

g00

�
2 þ �SM3 ; (B7)

where the radiative correction beyond the SM have
not been included. When �SM3 is calculated, MH � TeV
should be considered in order to imitate a strong ESB
physics. In our calculations, we consider MH ¼ 1 TeV,
2 TeV, as well as 300 GeV, for the sake of comparison.
All these values result in �SM3 larger than the experimental

3. The consequences are discussed in Sec. III C.
An expression, analogical to (B7), was obtained for

BESS in [33]. In BESS though, 3 is also a function of
parameter b which parameterizes the direct universal cou-
pling of the vector triplet to the left fermions

3 ¼ �b

2
þ
�
g

g00

�
2 þ �SM3 :

Thus, due to the universality, the limit for g00 depends on b
and vice versa (see Fig. 1 in [33]). When we change g00
from 10 to 1 the interval of the allowed b values shifts by
about 146% of its length. In contrast, the tBESS allowed
interval for bL � 2�L, when bR þ 2�R ¼ 0, will shift by
about 1% only (see Fig. 10). Here, the sensitivity to g00
enters only through the h, as can be seen in (B5).
Each of the parameters 1 and b restricts the combina-

tions bL � 2�L and bR þ 2�R. The 1 has no tree contri-
bution, so we have

1 ¼ �SM1 þ �NP1 : (B8)

On the other hand,

b ¼ treeb þ �SMb þ �NPb ; (B9)

where

treeb ¼ ��Zbb
L þ �Zbb

R : (B10)

For the NP loop contributions to the 1 and b the relations
from [32] have been adopted to obtain

�NP1 ¼ 3m2
t GF

2
ffiffiffi
2

p
	2

ln
�2

m2
t

½�Wtb
L ð1þ �Wtb

L Þ

þ ð�Ztt
R � �Ztt

L Þð1� �Ztt
R þ �Ztt

L Þ�; (B11)

�NPb ¼ m2
t GF

2
ffiffiffi
2

p
	2

ln
�2

m2
t

��
�Ztt
L �1

4
�Ztt
R

�
ð1þ2�Wtb

L Þ
�
; (B12)

where � is the cutoff of the low-energy top-BESS model
and it is set to 1 and 2 TeV. When calculating the SM

TABLE VI. The contributions to the individual epsilons. The
included contributions are denoted by the checkmark (✓), the
left-out (not calculated) contributions are denoted by the cross
mark (�).

Tree SM loops NP loops

Wtb Ztt Zbb

1 ✓ ✓ ✓ ✓ �
3 ✓ ✓ � � �
b ✓ ✓ ✓ ✓ �
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radiative corrections we set � ¼ MH. The loop contribu-
tions coming from the anomalous Zb �b vertex are not
considered here. The mass of the top quark considered in
the calculations is mt ¼ 172:7 GeV.

The allowed values of the expressions bL � 2�L and
bR þ 2�R are given by the intersections of the 1 and b
restrictions. However, recall that the b restrictions can be
applied only if p ¼ 0 or bR ¼ �2�R.

If p ¼ 0, the intersections form four disconnected re-
gions. The intersection, which contains the origin, is de-
picted in Fig. 10. Two other intersections are ruled out by
the B ! Xs� measurement. The fourth intersection and its
dependence on g00 and � is depicted in Fig. 17. All the
shown intersections of Fig. 17 lie completely inside the
B ! Xs� allowed area. Despite that, we have not consid-
ered the fourth intersection values for the tBESS parame-
ters in our analysis. The main reason is that the allowed
interval of bR þ 2�R is too narrow. Using the values of bR
and �R of this region would correspond to fine-tuning
below 10%, at least.

APPENDIX C: LOW-ENERGY LIMITS FROM
THE �ðZ ! b �bÞ DECAY

To derive the low-energy limits from partial decay width
�ðZ ! b �bÞ the Eq. (11) of [27] has been used

�b ¼ GFM
3
Z

6	
ffiffiffi
2

p �

�
3� �2

2
g2bV þ �2g2bA

�
NCRQCD

�
1þ �e

12	

�
;

(C1)

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

b=M
2
Z

q
, RQCD ¼ 1þ 1:2a� 1:1a2 �

13a3 is the QCD correction factor, a ¼ �sðMZÞ=	, and
gbV and gbA are vector and axial-vector couplings of the b
quark. We approximate the couplings by

gbV ¼ gtBESS; treebV þ �gSM; loop
bV ; (C2)

gbA ¼ gtBESS; treebA þ �gSM; loop
bA ; (C3)

where the first terms are the top-BESS tree-level couplings

gtBESS; treebV ¼ ð1� 4=3s2� � �Zbb
L � �Zbb

R Þ=2; (C4)

gtBESS; treebA ¼ ð1� �Zbb
L þ �Zbb

R Þ=2; (C5)

and the second terms are the SM loop contributions which
can be expressed in terms of the epsilon analysis

�g
SM; loop
bV ¼1

2

�
1þSM1

2

��
1�4

3
ð1þ�kÞs2�þSMb

�
�gSM; tree

bV ;

(C6)

�g
SM; loop
bA ¼ 1

2

�
1þ SM1

2

�
ð1þ SMb Þ � gSM; tree

bA ; (C7)

where gSM; tree
bV ¼ ð1� 4=3s2�Þ=2, gSM;tree

bA ¼ 1=2, and

�k ¼ SM3 � c2�
SM
1

c2�
: (C8)

The SM epsilons are equal to �SM’s of [41]. If the loop
corrections were not considered in the Eqs. (C2) and (C3),
each of the resulting stripes in Fig. 10 would shift to the
right by its width.
The low-energy limits for the fermion parameters are

based on the experimental values [42]

B :R:ðZ ! b �bÞ ¼ ð0:1512� 0:0005Þ; (C9)

�totðZÞ ¼ ð2:4952� 0:0023Þ GeV: (C10)
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FIG. 17 (color online). One of the four intersections of the 90% C.L. 1-allowed region (tilted strip) with the 90% C.L. b-allowed
region (vertical strip). Here, p ¼ 0 is assumed. Other two intersections are excluded by the B ! Xs� measurement and the fourth
intersection is depicted in Fig. 10. The black contours correspond to g00 ¼ 10 and the red ones to g00 ! 1. The cutoff scales considered
are � ¼ 1 TeV (left) and � ¼ 2 TeV (right).
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