Is IT A/THE HIGGS?

M. Gintner ^{1,2}

¹ U. of Žilina, Žilina, Slovakia

 2 IEAP CTU Prague, Czech Republic

Slezská univerzita, Opava Oct 4. 2012

OUTLINE

- A New 125 GeV Boson
- 2 Is it a Higgs?
- 3 Theory after July,4
- 1 The 125-GeV Boson and the top-BESS model

OUTLINE

- A New 125 GeV Boson
- 2 Is it a Higgs?
- 3 Theory after July,4
- 4 The 125-GeV Boson and the top-BESS model

DISCOVERY OF A NEW BOSON

Joseph Incandela

Fabiola Gianotti

Discovery of a NEW BOSON

July 4, 2012:

of mass about 125 GeV decaying to $\gamma\gamma$ and ZZ^* .

5.9 sigma

5.0 sigma

DISCOVERY DETAILS

$$\bullet$$
 $H \rightarrow \gamma \gamma$

 $\dots 4.5 \text{ sigma}$

$$H \to ZZ \to \ell\ell\ell\ell$$

 $\dots 3.4 \text{ sigma}$

$$H \to W^+W^- \to e\nu\mu\nu$$

$$M^{\rm ATLAS}=126.0\pm0.4(\rm stat.)\pm0.4(\rm sys.)~\rm GeV$$

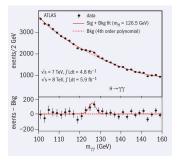
$$\bullet$$
 $H \rightarrow \gamma \gamma$

... 4.1 sigma

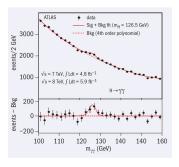
$$\bullet \quad H \to ZZ \to \ell\ell\ell\ell$$

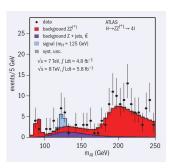
... 3.1 sigma

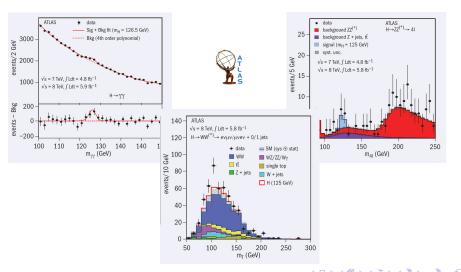
•
$$H \rightarrow W^+W^- \rightarrow \ell\nu\ell\nu$$

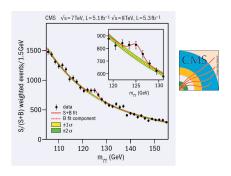

$$\bullet$$
 $H \rightarrow \tau \tau$

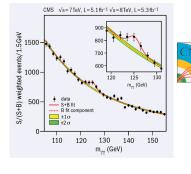
$$\bullet$$
 $H \rightarrow bb$

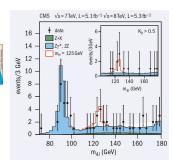

$$M^{\rm CMS} = 125.3 \pm 0.4 ({\rm stat.}) \pm 0.5 ({\rm sys.}) \; {\rm GeV}$$



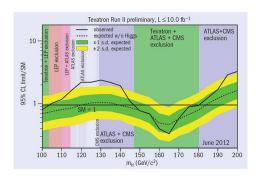





DISCOVERY DETAILS: CMS



DISCOVERY DETAILS: CMS


DISCOVERY DETAILS: CMS

TEVATRON CONTRIBUTION

 $H
ightarrow b ar{b}$... 3.1 sigma excess in $(120,135)~{
m GeV}$

... the most favorable channel if $M_{\rm Higgs}^{\rm SM} \leq 135~{\rm GeV}$

- mass $\sim 125~{\rm GeV}$
- electric charge = 0
- color-neutral
- boson
- ullet spin eq 1 (Landau-Yang theorem)
- $g_{hZZ} \sim 100 \ g_{h\gamma\gamma}$

- ullet mass $\sim 125~{
 m GeV}$
- \bullet electric charge = 0
- color-neutral
- boson
- spin $\neq 1$ (Landau-Yang theorem)
- ullet $g_{hZZ}\sim 100~g_{h\gamma\gamma}$

- mass $\sim 125~{\rm GeV}$
- electric charge = 0
- color-neutral
- boson
- spin $\neq 1$ (Landau-Yang theorem)
- $g_{hZZ} \sim 100 \ g_{h\gamma\gamma}$

- $\bullet \ \ \text{mass} \sim 125 \ \text{GeV}$
- electric charge = 0
- color-neutral
- boson
- spin $\neq 1$ (Landau-Yang theorem)
- $g_{hZZ} \sim 100 \ g_{h\gamma\gamma}$

- $\bullet \ \ \text{mass} \sim 125 \ \text{GeV}$
- electric charge = 0
- color-neutral
- boson
- ullet spin eq 1 (Landau-Yang theorem)
- $g_{hZZ} \sim 100 \ g_{h\gamma\gamma}$

- $\bullet \ \ \text{mass} \sim 125 \ \text{GeV}$
- electric charge = 0
- color-neutral
- boson
- ullet spin eq 1 (Landau-Yang theorem)
- $g_{hZZ} \sim 100 \ g_{h\gamma\gamma}$

OUTLINE

- A New 125 GeV Boson
- 2 Is it a Higgs?
- 3 Theory after July,4
- 4 The 125-GeV Boson and the top-BESS model

IS IT A HIGGS?

IS IT A HIGGS?

IS IT A HIGGS?

$$\text{if YES} \quad \longrightarrow \quad \text{a Higgs boson} \quad$$

Electroweak Symmetry Breaking:

- lacktriangle the gauge symmetry ightarrow interactions
- lacktriangledown $mar{\psi}\psi$, $m^2Z_\mu Z^\mu,\ldots$ ightarrow break the gauge symmetry
- $m \neq 0$ is the experimental fact!
- solution: Spontaneous Symmetry Breaking

... masses to the gauge bosons, at least

$$\text{if YES} \quad \longrightarrow \quad \text{a Higgs boson} \\$$

Electroweak Symmetry Breaking:

- lacktriangle the gauge symmetry ightarrow interactions
- ullet $mar{\psi}\psi$, $m^2Z_{\mu}Z^{\mu},\ldots$ o break the gauge symmetry
- m ≠ 0 is the experimental fact!
- solution: Spontaneous Symmetry Breaking

... masses to the gauge bosons, at least


```
\underline{some} SSB mechanisms \longrightarrow scalar field(s): Higgs(es)
```

- Higgs(es) couples to all SSB generated masses

- 0

```
\underline{some} SSB mechanisms \longrightarrow scalar field(s): Higgs(es)
```

- Higgs(es) couples to all SSB generated masses

```
\underline{some} SSB mechanisms \longrightarrow scalar field(s): Higgs(es)
```

- Higgs(es) couples to all SSB generated masses

- lacktriangledown not related $\Longrightarrow g_{hWW} pprox g_{hZZ} pprox g_{h\gamma\gamma}$
- ESB related \implies $g_{hWW} \approx g_{hZZ} \gg g_{h\gamma\gamma}$
- fermion masses \Longrightarrow $g_{hff} \sim m_f$

```
\underline{\mathsf{some}}\ \mathsf{SSB}\ \mathsf{mechanisms} \longrightarrow \mathsf{scalar}\ \mathsf{field(s)} \colon \mathsf{Higgs(es)}
```

- Higgs(es) couples to all SSB generated masses

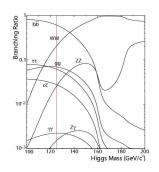
• not related
$$\implies g_{hWW} \approx g_{hZZ} \approx g_{h\gamma\gamma}$$
 X

$$\bullet \ \ {\sf ESB \ related} \qquad \Longrightarrow \qquad g_{hWW} \approx g_{hZZ} \gg g_{h\gamma\gamma} \qquad \checkmark$$

$$lacktriangle$$
 fermion masses \Longrightarrow $g_{hff} \sim m_f$

THE SM HIGGS

$$SM = simplest$$


- $SU(2)_L$ complex scalar doublet \rightarrow 4 scalar fields
- non-zero vacuum expectation value, $v \approx 250 \; \mathrm{GeV}$
- SSB \rightarrow gauge boson & fermion masses
- 3 non-physical fields
- 1 physical field → SM Higgs boson
- unknown mass

Profile of 125-GeV SM Higgs

- c very difficult to find
- iarge number of decay channels

$$\Gamma_{\rm tot} = 4.2 \; {\rm MeV}$$

$bar{b}$	56%	au au	6.2%	$\gamma\gamma$	0.23%
WW^*	23%	ZZ^*	2.9%	γZ	0.16%
gg	8.5%	$c\bar{c}$	2.8%	$\mu\mu$	0.02%

IS IT THE 125-GEV SM HIGGS?

check all the decay channels exist

check out their production/decay rates

the boson's cplngs

IS IT THE 125-GEV SM HIGGS?

check all the decay channels exist

check out their production/decay rates

the boson's cplngs

IS IT THE 125-GEV SM HIGGS?

check all the decay channels exist

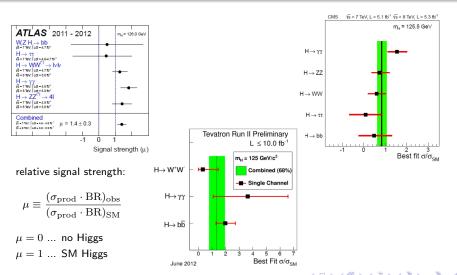
check out their production/decay rates

the boson's cplngs

DECAY CHANNEL EVIDENCE

channel	ATLAS	CMS	Tevatron
$\gamma\gamma$	4.5σ	4.1σ	_
ZZ^*	3.6σ	3.2σ	_
WW^*	2.8σ	1.6σ	_
$b ar{b}$	_	_	3.1σ
au au	_	deficit?	_

- probably settled by the full 2012 data


DECAY CHANNEL EVIDENCE

channel	ATLAS	CMS	Tevatron
$\gamma\gamma$	4.5σ	4.1σ	_
ZZ^*	3.6σ	3.2σ	_
WW^*	2.8σ	1.6σ	_
$bar{b}$	_	_	3.1σ
au au	_	deficit?	_

- probably settled by the full 2012 data

PRODUCTION/DECAY RATES

Is it the simplest Higgs?

- data roughly resembles IT
- we cannot say it is not IT

If YES

the end of the story of the LHC physics

If NO:

new particles and

Is it the simplest Higgs?

- data roughly resembles IT
- we cannot say it is not IT

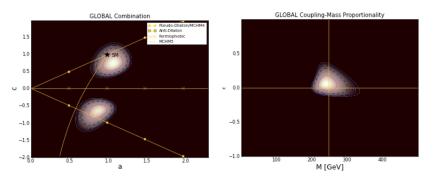
If YES:

the end of the story of the LHC physics

If NO:

new particles and new forces

OUTLINE


- A New 125 GeV Boson
- 2 Is it a Higgs?
- 3 Theory after July,4
- 4 The 125-GeV Boson and the top-BESS model

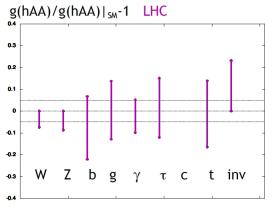
CASUALTIES AND SURVIVORS

- SUSY & Technicolor: "organized retreat"
 - unobserved particles & observed boson
- ∃ theories w/o Higgs which are not excluded
 - 125-GeV techni-dilaton favored by the LHC data [arXiv:1207.5911, 1208.0546]
- the "Higgs cplngs" discrimination
 - many models $\mu \approx 1$
 - global fit needed insufficient statistics at the moment
 - LHC troublemakers: $h \to b\bar{b}$, $h \to c\bar{c}$

CASUALTIES AND SURVIVORS

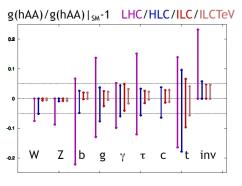
[J.Ellis, T.You, arXiv:1207.1693]

$$\mathcal{L}_{eff} = \frac{v^2}{4} \text{Tr} \left(D_{\mu} U D^{\mu} U^{\dagger} \right) \times \left[1 + 2a \frac{h}{v} + \dots \right]$$
$$- \frac{v}{\sqrt{2}} \Sigma_f \bar{f}_L \lambda_f f_R \left[1 + c_f \frac{h}{v} + \dots \right] + h.c.$$


"HIGGS CPLNG" THEORY PREDICTIONS

theory	cplng	correction	notes
SUSY	h au au	$10\% \left(\frac{400 \text{ GeV}}{m_A}\right)^2$	(1)
$SUSY(large\;\beta)$	$hbar{b}$	$\operatorname{corr}(h\tau\tau) + (1 \leftrightarrow 3)\%$	_
composite Higgs	$hfar{f}$	$(3 \leftrightarrow 9)\% \left(\frac{1 \text{ TeV}}{f}\right)^2$	(2)
Little Higgs	hgg	$(5 \leftrightarrow 9)\%$	_
	$h\gamma\gamma$	$(5 \leftrightarrow 6)\%$	_

 $^{^{(1)}}$ m_A ... the mass of a heavy A^0 Higgs boson


 $^{^{(2)}\} f$... the Goldstone boson decay constant

ACCURACY ESTIMATES FOR LHC (14 TeV, 300 fb⁻¹)

[M.E.Peskin, arXiv:1207.2516]

ACCURACY ESTIMATES FOR FUTURE COLLIDERS

[M.E.Peskin, arXiv:1207.2516]

```
LHC 14 TeV, 300 \text{ fb}^{-1} HLC 250 GeV, 250 \text{ fe}^{-1} ILC 500 GeV, 500 \text{ fb}^{-1} ILCTEV 1 TeV, 1 \text{ ab}^{-1}
```

COMPLEMENTARY INPUT

- find new particles/resonances
 - good understanding of SM bkgd
 - good understanding of NP signal
 - new triggers
- 125-GeV SM Higgs \Rightarrow Hierarchy problem
 - new theoretical ideas

OUTLINE

- A New 125 GeV Boson
- 2 Is it a Higgs?
- 3 Theory after July,4
- 1 The 125-GeV Boson and the top-BESS model

TOP-BESS MODEL

ullet effective Lagrangian: non-linear sigma model + new SU(2) vector resonance triplet global symmetry:

$$SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times \underbrace{SU(2)_{HLS}} \stackrel{SSB}{\longrightarrow} SU(2)_{L+R} \times U(1)_{B-L}$$

local symmetry:

$$\begin{array}{ccc} SU(2)_L \times U(1)_Y \times SU(2)_{HLS} & \stackrel{SSB}{\longrightarrow} & U(1)_{em} \\ g & g' & g'' & e \end{array}$$

- BESS: R. Casalbuoni et al, PLB155,95(1985); NPB282,235(1987)
- top-BESS: M.G., J.Juráň, I.Melo, PR**D84**,035013(2011) special role of top quark in ESB: $m_t \approx v/\sqrt{2}$

TOP-BESS FERMION SECTOR

fermion sector (SM fermions):

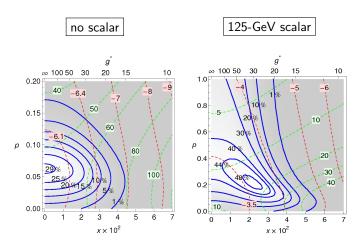
$$\mathcal{L}_{f}^{tBESS} \ = \ \underbrace{\mathcal{L}_{f}^{SM}(W,B)} \ + \ \underbrace{\mathcal{L}_{(t,b)}^{BSM}(W,B,\textcolor{red}{V})} \ + \ \underbrace{\mathcal{L}_{(t,b)}^{BSM'}(W,B)} \ + \ \underbrace{\mathcal{L}_{(t,$$

Adding the 125-GeV scalar resonance

top-BESS model:

$$\mathcal{L}_{\rm tBESS} = \mathcal{L}_{\rm GB} + \mathcal{L}_{\rm ESB} + \mathcal{L}_{\rm ferm}$$

+ scalar resonance:


$$\mathcal{L}'_{\text{tBESS}} = \mathcal{L}_{\text{tBESS}} + \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} M_{S}^{2} S^{2}$$
$$+ a \frac{v}{2} \text{Tr}(D_{\mu} U^{\dagger} D^{\mu} U) S$$
$$- \frac{1}{v} c \left(\bar{\psi}_{L}^{a} U M_{f}^{a} \psi_{R}^{a} + \text{H.c.} \right) S$$

where

$$D_{\mu}U = \partial_{\mu}U + \boldsymbol{W}U - U\boldsymbol{B}^{R3}$$

LOW-ENERGY LIMITS

Conclusions

- the Higgs era in HEP just has begun!
- all major "players" still in game
- the 2012 LHC data might bring big news or nothing
- new e^+e^- linear collider needed