IS IT A/THE HIGGS?

M. Gintner

Žilinská univerzita, Žilina Oct 16, 2012

Nobel Prize in Physics 2012

Serge Haroche

David J. Wineland

"... for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

OUTLINE

- A New 125 GeV Boson
- 2 Is it a Higgs?

3 Theory after July,4

OUTLINE

- A New 125 GeV Boson
- 2 Is it a Higgs?

3 Theory after July,4

DISCOVERY OF A NEW BOSON

Joseph Incandela

Fabiola Gianotti

July 4, 2012:

5.9 sigma

Discovery of a NEW BOSON of mass about 125 GeV decaying to $\gamma\gamma$ and ZZ^* .

5.0 sigma

DISCOVERY DETAILS

$$\bullet$$
 $H \rightarrow \gamma \gamma$

$$\dots 4.5 \text{ sigma}$$

•
$$H \rightarrow ZZ \rightarrow \ell\ell\ell\ell$$

$$\dots 3.4 \text{ sigma}$$

•
$$H \to W^+W^- \to e\nu\mu\nu$$

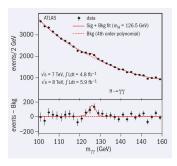
$$M^{\rm ATLAS} = 126.0 \pm 0.4 ({\rm stat.}) \pm 0.4 ({\rm sys.}) \text{ GeV}$$

$$\bullet$$
 $H \rightarrow \gamma \gamma$

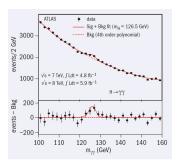
$$\dots 4.1 \text{ sigma}$$

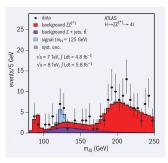
•
$$H \rightarrow ZZ \rightarrow \ell\ell\ell\ell$$

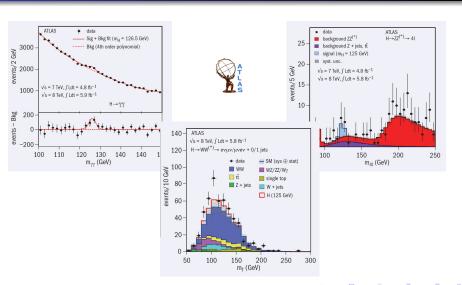
$$H \to W^+W^- \to \ell\nu\ell\nu$$

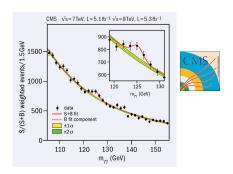

$$\bullet$$
 $H \rightarrow \tau \tau$

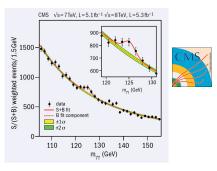
$$\bullet$$
 $H \rightarrow bb$

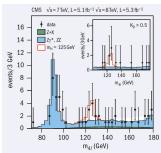

$$M^{\rm CMS} = 125.3 \pm 0.4 ({\rm stat.}) \pm 0.5 ({\rm sys.}) \; {\rm GeV}$$



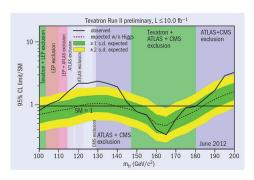





DISCOVERY DETAILS: CMS



DISCOVERY DETAILS: CMS


DISCOVERY DETAILS: CMS

TEVATRON CONTRIBUTION

 $H
ightarrow b ar{b}$... 3.1 sigma excess in $(120,135)~{
m GeV}$

... the most favorable channel if $M_{\rm Higgs}^{\rm SM} \leq 135~{\rm GeV}$

- $\bullet \ \ \text{mass} \sim 125 \ \text{GeV}$
- electric charge = 0
- color-neutral
- boson
- \bullet spin $\neq 1$ (Landau-Yang theorem)
- \bullet $g_{hZZ} \sim 100 \ g_{h\gamma\gamma}$

- $\bullet \ \ \text{mass} \sim 125 \ \text{GeV}$
- electric charge = 0
- color-neutral
- boson
- spin $\neq 1$ (Landau-Yang theorem)
- \bullet $q_{hZZ} \sim 100 q_{h\gamma\gamma}$

- $\bullet \ \ \text{mass} \sim 125 \ \text{GeV}$
- electric charge = 0
- color-neutral
- boson
- spin $\neq 1$ (Landau-Yang theorem)
- $g_{hZZ} \sim 100 \ g_{h\gamma\gamma}$

- $\bullet \ \ \text{mass} \sim 125 \ \text{GeV}$
- electric charge = 0
- color-neutral
- boson
- spin $\neq 1$ (Landau-Yang theorem)
- $g_{hZZ} \sim 100 \ g_{h\gamma\gamma}$

- $\bullet \ \ \text{mass} \sim 125 \ \text{GeV}$
- electric charge = 0
- color-neutral
- boson
- ullet spin eq 1 (Landau-Yang theorem)
- $g_{hZZ} \sim 100 \ g_{h\gamma\gamma}$

What we have got ...

- $\bullet \ \ \text{mass} \sim 125 \ \text{GeV}$
- electric charge = 0
- color-neutral
- boson
- ullet spin eq 1 (Landau-Yang theorem)
- $g_{hZZ} \sim 100 \ g_{h\gamma\gamma}$

OUTLINE

- ① A New 125 GeV Boson
- 2 Is it a Higgs?
- 3 Theory after July,4

Is it a Higgs?

IS IT A HIGGS?

IS IT A HIGGS?

IS THE BOSON RELATED TO ESB? (I)

$$\text{if YES} \quad \longrightarrow \quad \text{a Higgs boson} \\$$

Electroweak Symmetry Breaking:

- lacktriangle the gauge symmetry ightarrow interactions
- ullet $mar{\psi}\psi$, $m^2Z_\mu Z^\mu,\ldots$ o break the gauge symmetry
- $m \neq 0$ is the experimental fact!
- solution: Spontaneous Symmetry Breaking

... masses to the gauge bosons, at least

IS THE BOSON RELATED TO ESB? (I)

$$\text{if YES} \quad \longrightarrow \quad \text{a Higgs boson} \quad$$

Electroweak Symmetry Breaking:

- ullet the gauge symmetry o interactions
- ullet $mar{\psi}\psi$, $m^2Z_\mu Z^\mu,\ldots$ o break the gauge symmetry
- m ≠ 0 is the experimental fact!
- solution: Spontaneous Symmetry Breaking

... masses to the gauge bosons, at least

IS THE BOSON RELATED TO ESB? (II)

```
\underline{\mathsf{some}} SSB mechanisms \longrightarrow scalar field(s): Higgs(es)
```

- Higgs(es) couples to all SSB generated masse

- a
- .

Is the boson related to ESB? (II)

```
\underline{some} SSB mechanisms \longrightarrow scalar field(s): Higgs(es)
```

- Higgs(es) couples to all SSB generated masses

- 0
- 0

Is the boson related to ESB? (II)

```
\underline{\mathsf{some}}\;\mathsf{SSB}\;\mathsf{mechanisms}\qquad\longrightarrow\qquad\mathsf{scalar}\;\mathsf{field}(\mathsf{s})\mathsf{:}\;\mathsf{Higgs}(\mathsf{es})
```

- Higgs(es) couples to all SSB generated masses

- lacktriangledown not related $\Longrightarrow g_{hWW} pprox g_{hZZ} pprox g_{h\gamma\gamma}$
- ESB related \implies $g_{hWW} pprox g_{hZZ} \gg g_{h\gamma\gamma}$
- $\bullet \ \ \text{fermion masses} \qquad \Longrightarrow \qquad g_{hff} \sim m_f$

Is the boson related to ESB? (II)

```
\underline{\mathsf{some}}\;\mathsf{SSB}\;\mathsf{mechanisms}\qquad\longrightarrow\qquad\mathsf{scalar}\;\mathsf{field}(\mathsf{s})\mathsf{:}\;\mathsf{Higgs}(\mathsf{es})
```

- Higgs(es) couples to all SSB generated masses
- Higgs cplng

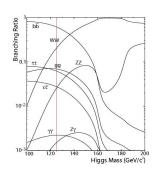
 SSB mass

$$lacktriangledown$$
 not related $\Longrightarrow g_{hWW} pprox g_{hZZ} pprox g_{h\gamma\gamma}$ $imes$

$$ullet$$
 ESB related \Longrightarrow $g_{hWW} pprox g_{hZZ} \gg g_{h\gamma\gamma}$

$$lacktriangledown$$
 fermion masses \Longrightarrow $g_{hff} \sim m_f$

THE SM HIGGS


$$SM = simplest$$

- 3 non-physical fields
- 1 physical field \rightarrow SM Higgs boson
- unknown mass

Profile of 125-GeV SM Higgs

- © large number of decay channels
- circuit very difficult to find

$$\Gamma_{\rm tot} = 4.2 \ \text{MeV}$$

bb	56%	au au	6.2%	$\gamma\gamma$	0.23%
WW^*	23%	ZZ^*	2.9%	γZ	0.16%
gg	8.5%	$c\bar{c}$	2.8%	$\mu\mu$	0.02%

Is it the 125-GeV SM Higgs?

check all the decay channels exist

check out their production/decay rates

the boson's cplngs

IS IT THE 125-GEV SM HIGGS?

o check all the decay channels exist

check out their production/decay rate

the boson's cplngs

Is it the 125-GeV SM Higgs?

check all the decay channels exist

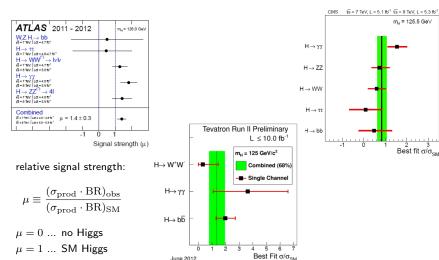
2 check out their production/decay rates

the boson's cplngs

DECAY CHANNEL EVIDENCE

channel	ATLAS	CMS	Tevatron
$\gamma\gamma$	4.5σ	4.1σ	_
ZZ^*	3.6σ	3.2σ	_
WW^*	2.8σ	1.6σ	_
$bar{b}$	_	_	3.1σ
au au	_	deficit?	_

- probably settled by the full 2012 data


DECAY CHANNEL EVIDENCE

channel	ATLAS	CMS	Tevatron
$\gamma\gamma$	4.5σ	4.1σ	_
ZZ^*	3.6σ	3.2σ	_
WW^*	2.8σ	1.6σ	_
$bar{b}$	_	_	3.1σ
au au	_	deficit?	_

- probably settled by the full 2012 data

PRODUCTION/DECAY RATES

Is it the simplest Higgs?

- data roughly resembles IT
- we cannot say it is not IT

If YES

the end of the story of the LHC physics

If NO

new particles and new forces

Is it the *simplest* Higgs?

- data roughly resembles IT
- we cannot say it is not IT

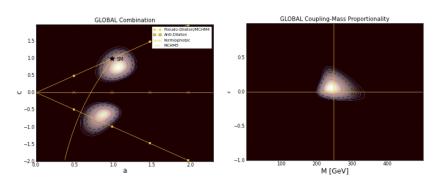
If YES:

the end of the story of the LHC physics

If NO:

new particles and new forces

OUTLINE


- ① A New 125 GeV Boson
- 2 Is it a Higgs?

3 Theory after July,4

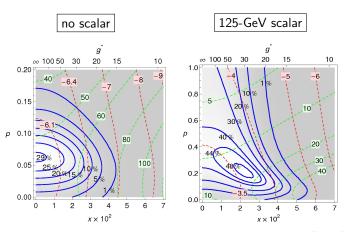
CASUALTIES AND SURVIVORS

- SUSY & Technicolor: "organized retreat"
 - unobserved particles & observed boson
- ∃ theories w/o Higgs which are not excluded
 - 125-GeV techni-dilaton favored by the LHC data [arXiv:1207.5911, 1208.0546]
- the "Higgs cplngs" discrimination
 - many models $\mu \approx 1$
 - global fit needed insufficient statistics at the moment
 - LHC troublemakers: $h \to b \bar b, \ h \to c \bar c$

CASUALTIES AND SURVIVORS

[J.Ellis, T.You, arXiv:1207.1693]

$$\mathcal{L}_{eff} = \frac{v^2}{4} \text{Tr} \left(D_{\mu} U D^{\mu} U^{\dagger} \right) \times \left[1 + 2a \frac{h}{v} + \dots \right]$$


$$- \frac{v}{\sqrt{2}} \Sigma_f \bar{f}_L \lambda_f f_R \left[1 + c_f \frac{h}{v} + \dots \right] + h.c.$$

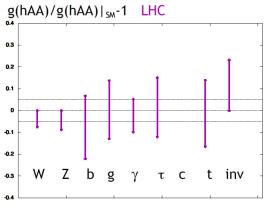
TOP-BESS MODEL: LOW-ENERGY LIMITS

Top-BESS model: M.Gintner, J.Juráň, I.Melo, Phys.Rev.D84, 035013 (2012)

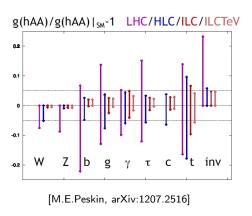
TOP-BESS MODEL: LOW-ENERGY LIMITS

Top-BESS model: M.Gintner, J.Juráň, I.Melo, Phys.Rev.D84, 035013 (2012)

"HIGGS CPLNG" THEORY PREDICTIONS


theory	cplng	correction	notes
SUSY	h au au	$10\% \left(\frac{400 \text{ GeV}}{m_A}\right)^2$	(1)
SUSY(large β)	$hbar{b}$	$corr(h\tau\tau) + (1 \leftrightarrow 3)\%$	(1)
			_
composite Higgs	$hfar{f}$	$(3 \leftrightarrow 9)\% \left(\frac{1 \text{ TeV}}{f}\right)^2$	(2)
Little Higgs	$hgg \ h\gamma\gamma$	$(5 \leftrightarrow 9)\%$ $(5 \leftrightarrow 6)\%$	_ _

 $^{^{(1)}\} m_{A}\ \dots$ the mass of a heavy A^{0} Higgs boson


 $^{^{\}left(2\right) }\ f\ \dots$ the Goldstone boson decay constant

ACCURACY ESTIMATES FOR LHC (14 TeV, 300 FB⁻¹)

[M.E.Peskin, arXiv:1207.2516]

ACCURACY ESTIMATES FOR FUTURE COLLIDERS

Complementary input

- find new particles/resonances
 - good understanding of SM bkgd
 - good understanding of NP signal
 - new triggers
- ullet 125-GeV SM Higgs \Rightarrow Hierarchy problem
 - new theoretical ideas

Conclusions

- the Higgs era in HEP just has begun!
- all major "players" still in game
- the 2012 LHC data might bring big news or nothing
- new e^+e^- linear collider needed