TOP-BESS MODEL

AND

ITS PHENOMENOLOGY

M. Gintner^{1,2}, <u>J. Juráň</u>², I. Melo¹

¹ Žilina U.

 2 IEAP CTU in Prague

Physical Review D 84, 035013 (2011)

17th Conference of Slovak and Czech Physicists Žilina, Sep 7, 2011

< □ > < □ > < □ > < ○

Standard model — Gauge Principle — EW Symmetry

$SU(2)_L \times U(1)_Y \quad \Rightarrow \quad \text{EW interactions}$

ELECTROWEAK SYMMETRY BREAKING PUZZLE

Spontaneous Symmetry Breaking + Higgs mechanism

ESB scenarios

Benchmark hypothesis \rightarrow SM Higgs

ESB alternatives

- Weakly interacting
- Strongly interacting

BREAKING ELECTROWEAK SYMMETRY STRONGLY

R. Casalbuoni, S. De Curtis, D. Dominici, R. Gatto

PLB155, 95 (1985), NPB282, 235 (1987)

BREAKING ELECTROWEAK SYMMETRY STRONGLY

- effective Lagrangian
- H/SM + new vector resonances
- Local symmetry $SU(2)_L \times U(1)_Y \times SU(2)_{HLS} \xrightarrow{SSB} U(1)_{em}$ $g \quad g' \quad g'' \qquad e$

BREAKING ELECTROWEAK SYMMETRY STRONGLY

- effective Lagrangian
- H/SM + new vector resonances
- Local symmetry $SU(2)_L \times U(1)_Y \times SU(2)_{HLS} \xrightarrow{SSB} U(1)_{em}$ $g \quad g' \quad g'' \qquad e$
- Gauge sector: GB-mixing
- Fermion sector:
 - ◊ <u>direct</u> coupling: <u>universal</u> chiral
 - ◊ indirect coupling: GB-mixing induced

... bg'', b'g''... 1/g''

- gauge sector: identical to BESS
- fermion sector: modificated

- gauge sector: identical to BESS
- fermion sector: modificated

 $\diamond 3^{\sf rd}$ quark generation singled out ... b_L, b_R

- gauge sector: identical to BESS
- fermion sector: modificated

- gauge sector: identical to BESS
- fermion sector: modificated

- gauge sector: identical to BESS
- fermion sector: modificated

- \diamond consequences: weakened low-energy limits on b's (... and λ 's)

DECAY WIDTHS

< □ > < □ > < □ > < ○</p>

UNITARITY CONSTRAINTS

- $W_L^+ W_L^-$, $Z_L Z_L$, $W_L^\pm Z_L$, $W_L^\pm W_L^\pm$
- tree level
- Equivalence Theorem

MEASURED OBSERVABLES (LEP + SLC + TEVATRON)

EWPD ϵ -analysis: ϵ_1 , ϵ_2 , ϵ_3 , ϵ_b , $\Gamma(Z \to b\bar{b})$, $B \to X_s \gamma$, $p\bar{p} \to WZX$

Measured Observables (LEP + SLC + Tevatron)

EWPD ϵ -analysis: ϵ_1 , ϵ_2 , ϵ_3 , ϵ_b , $\Gamma(Z \to b\bar{b})$, $B \to X_s \gamma$, $p\bar{p} \to WZX$

$\epsilon_1, \ \Gamma(Z \to b\bar{b}), \ B \to X_s \gamma \text{ restriction}$

Intersections of 90% C.L. allowed regions.

$$M_V = 1 \text{ TeV}$$
$$g'' = 10$$

< □ > < □ > < □ > < ○

M. Gintner, J. Juráň, I. Melo top-BESS Model

・ロ > < 母 > りへの

- the actual mechanism of ESB still remains a puzzle
- top-BESS model the effective description of strong ESB
- modification of BESS model; special role of top quark
 - ★ new SU(2) vector triplet
 - ◊ direct coupling to top and bottom only
 - ◊ disentangled interaction of the right-handed top-bottom doublet
 - \diamond new λ terms
- low-energy limits on the fermion parameters are relaxed