The effective description of strong electroweak symmetry breaking

Josef Juráň

Institute of Experimental and Applied Physics

Czech Technical University in Prague

Outline

- Introduction
- BESS model
- top-BESS model
- Phenomenology of the models
- Conclusion

Introduction

- SM of electroweak interactions based on the gauge principle
- gauge symmetry of Lagrangian $SU(2)_L imes U(1)_Y$

🔶 massless A, W[±], Z

- massive gauge bosons
- Higgs mechanism based on Spontaneous Symmetry Breaking (SSB)
- unknown mechanism of Electroweak Symmetry Breaking (ESB)
- benchmark hypothesis:

$$\Phi(x) = \begin{pmatrix} \pi_2(x) + i\pi_1(x) \\ v + h(x) - i\pi_3(x) \end{pmatrix}, \quad \langle \Phi \rangle_0 = v$$

 \Rightarrow Higgs boson

Higgs not observed yet

Introduction

Existing scenarios of ESB

• weakly-interacting:

- ...

ESB is broken by perturbative interactions elementary scalar fields

- SM Higgs sector \Rightarrow Higgs boson
- SUSY: more Higgs bosons

strongly-interacting:

ESB is broken by new strong interactions no Higgs, composite particles

- Technicolor-like theories
- extra-dimensions, ... AdS/CFT correspondence

- ...

- Kaluza-Klein towers
- gauge-Higgs unification

- a lot of models
- Iow-energy phenomenology based on Effective Lagrangian

— ...

ESB: general requirements

Goldstone theorem:

$SSB: G \to H \Rightarrow the \neq$	# of Goldstone Bosons = $\dim G - \dim H$
massive gauge bosons massless gauge bosons	• $SU(2)_L \times U(1)_Y \subset G$, $U(1)_{em} \subset H$ $\Rightarrow \dim G \ge 4$, $\dim H \ge 1$
	• if SSB $\Rightarrow M_{W,Z}$ then $M_{W,Z} = \mathcal{O}(v)$
G	• EXP: $\rho \equiv \frac{\text{charged current}}{\text{neutral current}} \approx 1$
NGB	if $SU(2)_V \subset H$ then $\rho = 1$
	<u>tree:</u> $\rho = M_W^2 / (M_Z^2 \cos^2 \theta_W) = 1$
• at least 3 NGB's \Rightarrow	$\begin{array}{l} \underline{\text{loop: }}{g' \text{ breaks } SU(2)_V, \ \mathcal{O}(g'^2) \sim 0.01 \\ \hline \Rightarrow \dim H \geq 3 \end{array}$
$\dim G - \dim H \ge 3$	no NGB's observed
 the massive gauge bosons must be coupled 	$\Rightarrow \dim G - \dim H = 3$
to the corresponding three NGB's	$SU(2)_L \times SU(2)_R \to SU(2)_V$

BESS model

- effective description of the Breaking El-weak Symmetry Strongly
- effective non-renormalizable Lagrangian
- Hidden Local Symmetry approach $[SU(2)_L imes SU(2)_R]^{glob} imes SU(2)_V^{loc}$

 $SU(2)_v$ vector boson triplet V_u^a a=1,2,3 (gauge fields in HLS)

- other fields:
 - SM gauge bosons, SM fermions, no Higgs, 6 unphys. scalar fields
- interaction of SM gauge bosons modified by the mixing with V^a
- interaction with fermions with V^a_µ:
 direct (inter-generational universality), indirect
- [1] R. Casalbuoni, S. De Curtis, D. Dominici, R. Gatto, Phys. Lett. B155 (1985) 95.
- [2] R. Casalbuoni, S. De Curtis, D. Dominici, R. Gatto, Nucl. Phys. B282 (1987) 235.
- [3] R. Casalbuoni, P. Chiappetta, S. De Curtis, F. Feruglio, R. Gatto, B. Mele, J. Terron, Phys. Lett. B249 (1990) 130.
- [4] G. Altarelli, R. Casalbuoni, D. Dominici, F. Feruglio, R. Gatto, Nucl. Phys. B342 (1990) 15.

top-BESS model

Mikuláš Gintner *

Josef Juráň

Ivan Melo *

Beáta Trpišová *

* Department of Physics, University of Žilina, Slovak Republic

• modification of the BESS model

 motivation: mass of top quark – too big and close to scale of ESB (might be a sign of top`s special role in new physics behind mechanism of ESB)

top-BESS model

• interactions of V_{μ}^{a} to fermions:

- inter-generational universality broken: * no direct interactions to leptons * no direct interactions to u, d, c, s* direct interaction to the left (t, b) doublet: b_1 * direct interaction to the right t quark: b_2 * direct interaction to the right b quark: pb_2 , $0 \le p \le 1$ - global $SU(2)_R$ broken down to $U(1)_{R3}$ if p < 1

interactions of the SM gauge bosons to fermions:

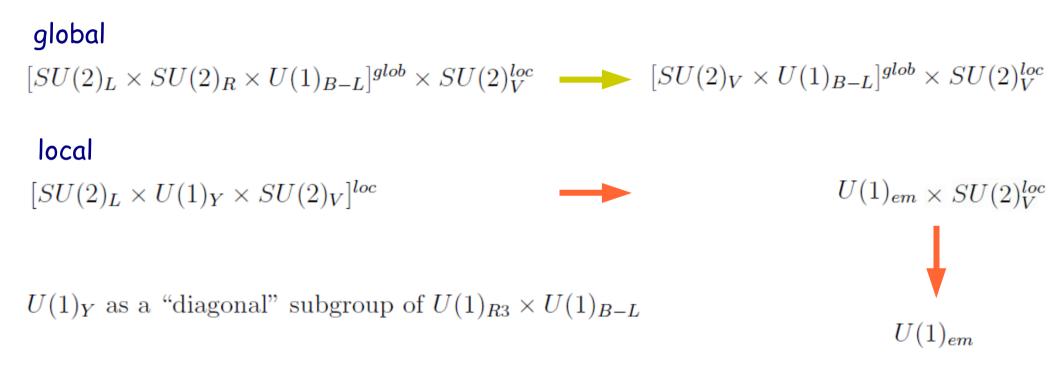
 – symmetries of the model admit modification of the SM gauge-boson-to-fermion couplings not considered previously in the original BESS model:

... to the left (t, b) doublet: λ_1

- ... to the right (t,b) doublet: λ_2
- parity violation terms

top-BESS model

Symmetries



$$[SU(2)_V \times U(1)_{B-L}] \cap [SU(2)_L \times U(1)_Y] \equiv U(1)_{em}$$

diagonal group $U(1)_{em} \equiv U(1)_{L3} \times U(1)_{R3} \times U(1)_{B-L}$

$$Q \equiv T_L^3 + Y$$
$$Y \equiv T_R^3 + \frac{1}{2}(B - L)$$

 $SU(2)_V \text{ triplet: } V_\mu = i \frac{g''}{2} V^a_\mu \tau^a$ $SU(2)_L \text{ triplet: } W_\mu = i g W^a_\mu \tau^a$ $U(1)_Y \text{ singlet: } B_\mu = i g' B_\mu Y$

top-BESS Lagrangian

$$\mathcal{L} = -v^2 [\mathrm{Tr}(\bar{\omega}^{\mu}_{\perp})^2 + \alpha \mathrm{Tr}(\bar{\omega}^{\mu}_{\parallel})^2] + \mathcal{L}_{Wkin} + \mathcal{L}_{Bkin} + \mathcal{L}_{Vkin} + \mathcal{L}_{f}$$

v , $\alpha~$ free real parameters

$$\mathcal{L}_{f} = \mathcal{I}_{a}^{L,R} + \frac{1}{1 + b_{L,R}} \mathcal{I}_{c}^{L,R} + \frac{b_{L,R}}{1 + b_{L,R}} \mathcal{I}_{b}^{L,R} + \frac{\lambda_{L,R}}{1 + b_{L,R}} \mathcal{I}_{\lambda}^{L,R} - m_{f} \mathcal{I}_{m}$$

 $b_{L,R}$, $\Lambda_{L,R}$ and m_f are free real parameters (L, R --> 1, 2)

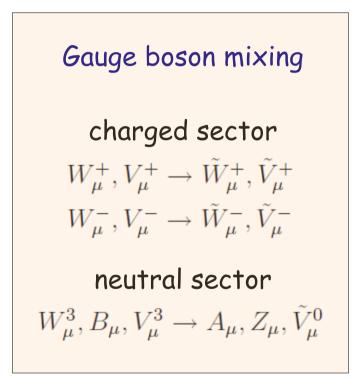
 I_a , I_c and I_m kinetic and mass terms

$$I_{c}$$
, I_{b} and I_{A} only $(t, b)_{L,R}$ dublets

 $b_{L,R}$ direct interaction of $(t, b)_{L,R}$ dublets with V_{μ} $\Lambda_{L,R}$ modification of interaction of $(t, b)_{L,R}$ with W_{μ} , B_{μ}

Gauge boson mixing

 $\mathcal{L} = -v^2 [\mathrm{Tr}(\bar{\omega}_{\perp}^{\mu})^2 + \alpha \mathrm{Tr}(\bar{\omega}_{\parallel}^{\mu})^2] + \mathcal{L}_{Wkin} + \mathcal{L}_{Bkin} + \mathcal{L}_{Vkin} + \mathcal{L}_{F}$



Due to mixing also 1st and 2nd generation of leptons can interacts with \hat{V}_{μ} (except v_{R}).

Low-energy limits

From limits on anomalous *tbW*, *bbZ* and *ttZ* couplings: (from measurements at LEP/SLC and CLEO)

 $g'' \stackrel{>}{\sim} 20$

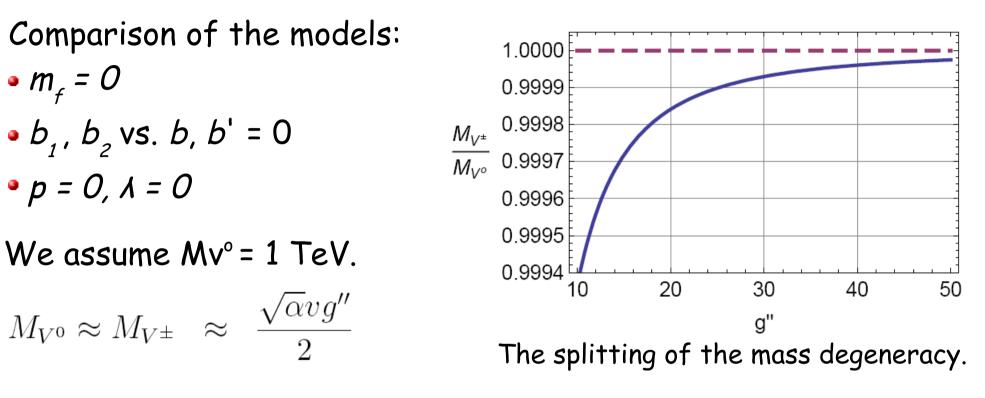
$$-0.003 < b_1 - \lambda_1 < 0.01$$

p > 0: $|p(b_2 - \lambda_2)| < 0.008$

$$p = 0: \quad -0.03 < b_2 - \lambda_2 < 0.04$$

BESS limits: $b \stackrel{<}{\sim} 0.01$, b' = 0

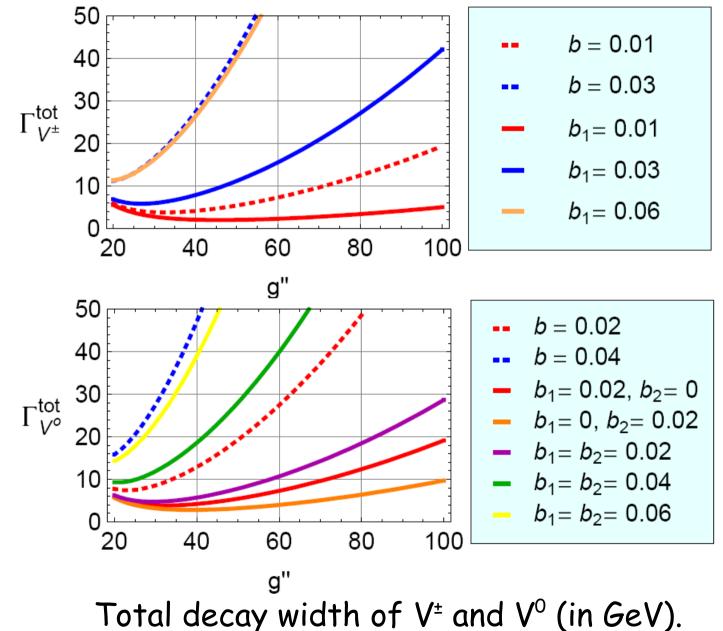
Our modifications of the BESS model relaxes the low-energy limits on the original BESS model`s parameters.



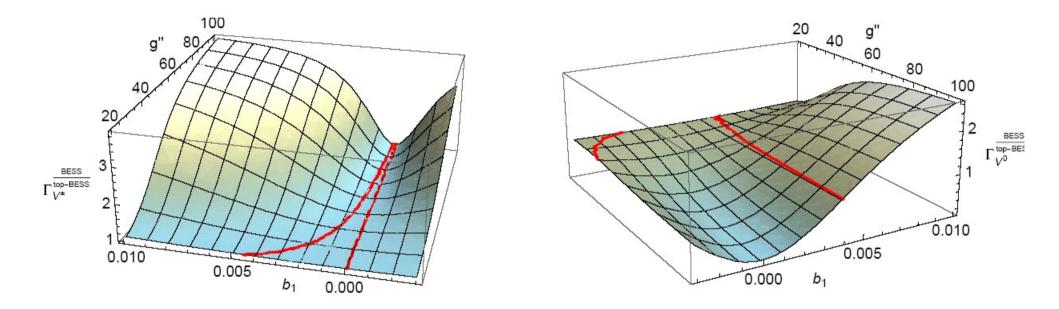
Basic features of decay widths

7 decay channels of V^{\pm} : $V^{-} \to \bar{t}b, \bar{c}s, \bar{u}d, \tau\bar{\nu}_{\tau}, \mu\bar{\nu}_{\mu}, e\bar{\nu}_{e}, W^{-}Z$ 13 decay channels of V^{0} : $V^{0} \to b\bar{b}, t\bar{t}, s\bar{s}, c\bar{c}, d\bar{d}, u\bar{u}, \nu_{\tau}\bar{\nu}_{\tau}, \tau\bar{\tau}, \nu_{\mu}\bar{\nu}_{\mu}, \mu\bar{\mu}, \nu_{e}\bar{\nu}_{e}, e\bar{e}, W^{+}W^{-}$

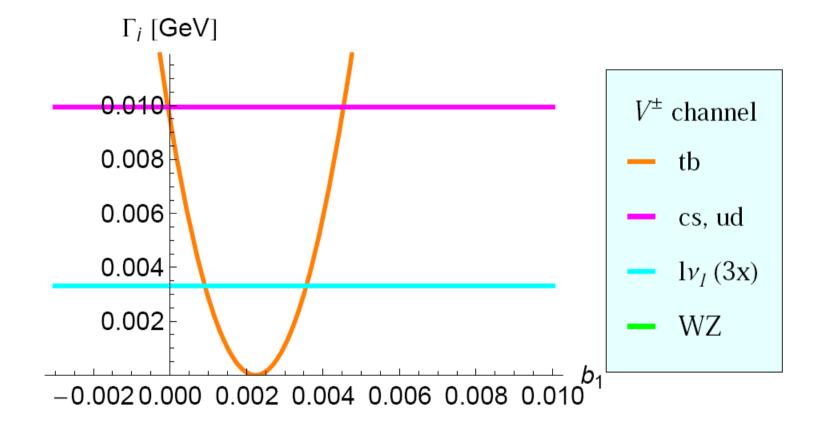
Both BESS models have the same partial decay widths: $V^{\pm} \rightarrow W^{\pm}Z$, $V^{0} \rightarrow W^{+}W^{-}$ If all b`s = 0 then BESS = top-BESS. If b_{2} = 0 and b_{1} = b then $\Gamma(tt, bb, tb)$ are the same.



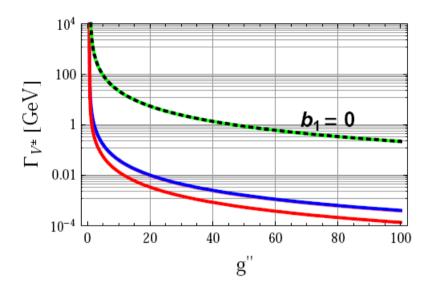
BESS model dotted lines, top-BESS model solid lines.

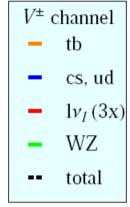


Ratio of total charged (on the left) and neutral (on the right; $b_2=0.01, b'=0$) decay width of BESS to top-BESS model. Red curve is ratio one.

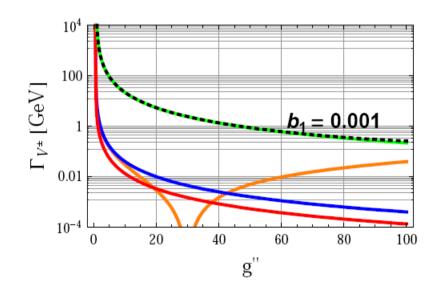


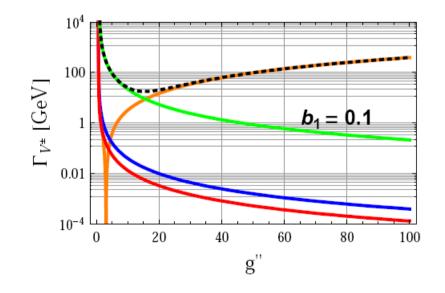
Partial decay width of V^{\pm} for g'' = 20. $\Gamma_{WZ} \doteq 5.4$ GeV.

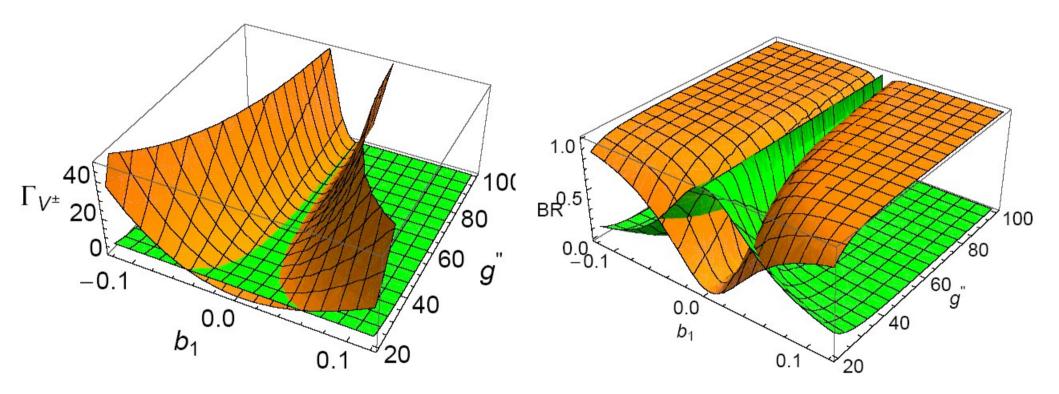




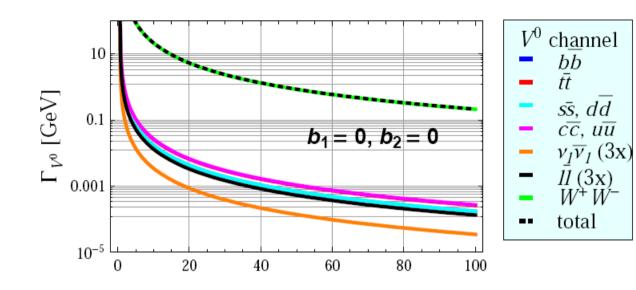
Decay width of charged resonance.



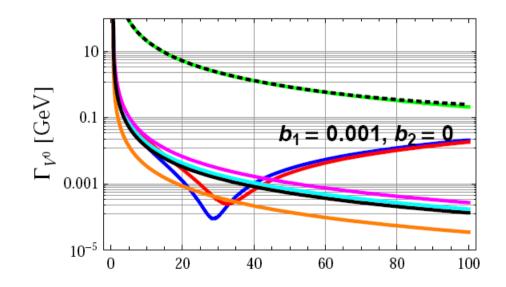


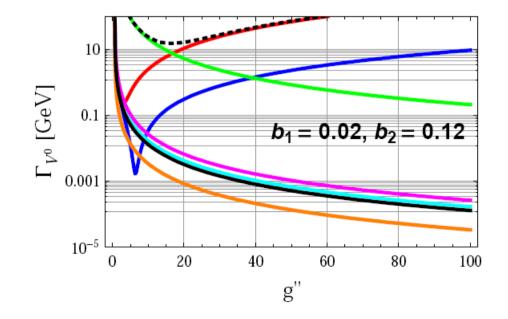


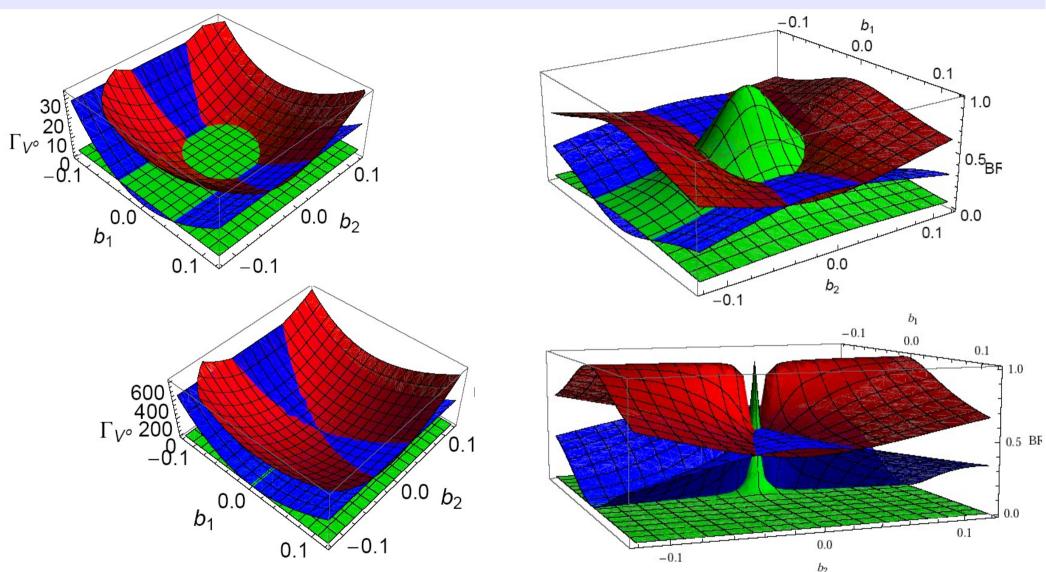
The top-BESS dominant partial decay widths of V^+ (left) and their branching ratio (right) as functions of b_1 and g''. The green, orange surfaces correspond to the W^+Z , $t\bar{b}$ channels, respectively. The partial decay widths are in GeV.



Decay width of neutral resonance.







The top-BESS dominant partial decay widths of V^0 (left) and their branching ratio (right) as functions of b_1 and b_2 at g'' = 25, 100, from the top to the down, respectively. The green, blue, red surfaces correspond to the W^+W^- , $b\bar{b}$, $t\bar{t}$ channels, respectively. The partial decay widths are in GeV.

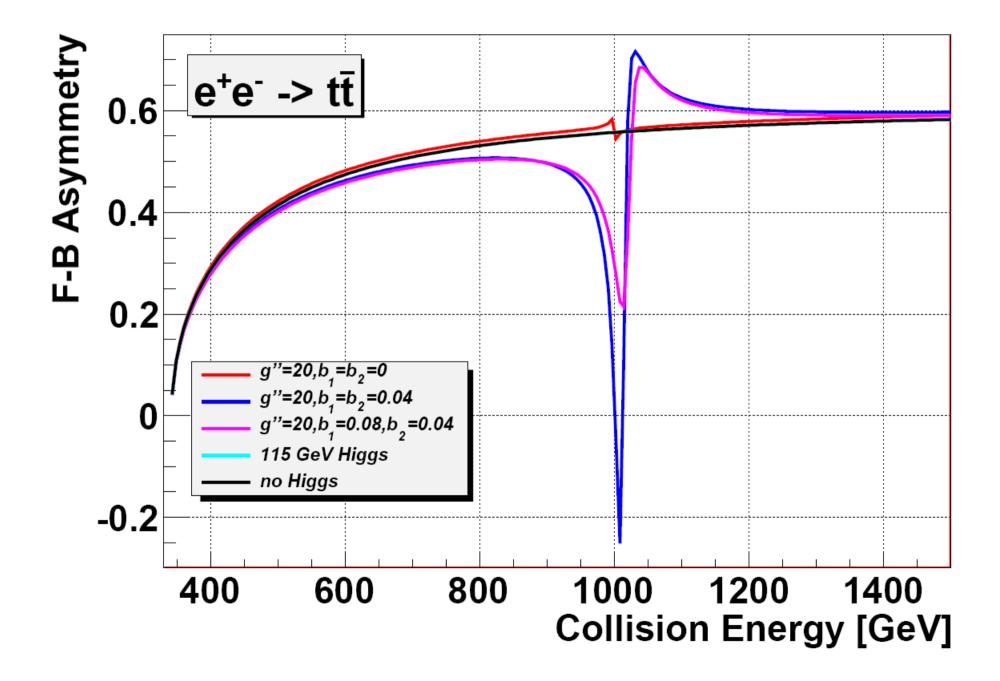
top-BESS model @ LHC

process	Р	cut	σ (pb)	R_0	R
					(100 fb^{-1})
	SM	no	5.84	0	0
$pp \to t\bar{b}X + c.c$	2		6.17	0.136	43.04
	SM	$0.7 \text{ TeV} \le m_{tb} \le 1.1 \text{ TeV}$	0.14	0	0
	2		0.20	0.163	51.47
	SM	no	14.77	0	0
$pp \rightarrow W^+ZX + c.c$	3		16.96	0.570	180.37
	SM	$0.7 \text{ TeV} \le m_{WZ} \le 1.1 \text{ TeV}$	0.20	0	0
	3		0.29	0.188	59.30
	SM	no	29.86	0	0
$pp \rightarrow W^+W^-X$	3		31.86	0.366	115.74
	SM	$0.7 \text{ TeV} \le m_{WW} \le 1.1 \text{ TeV}$	0.37	0	0
	3		0.42	0.097	30.75

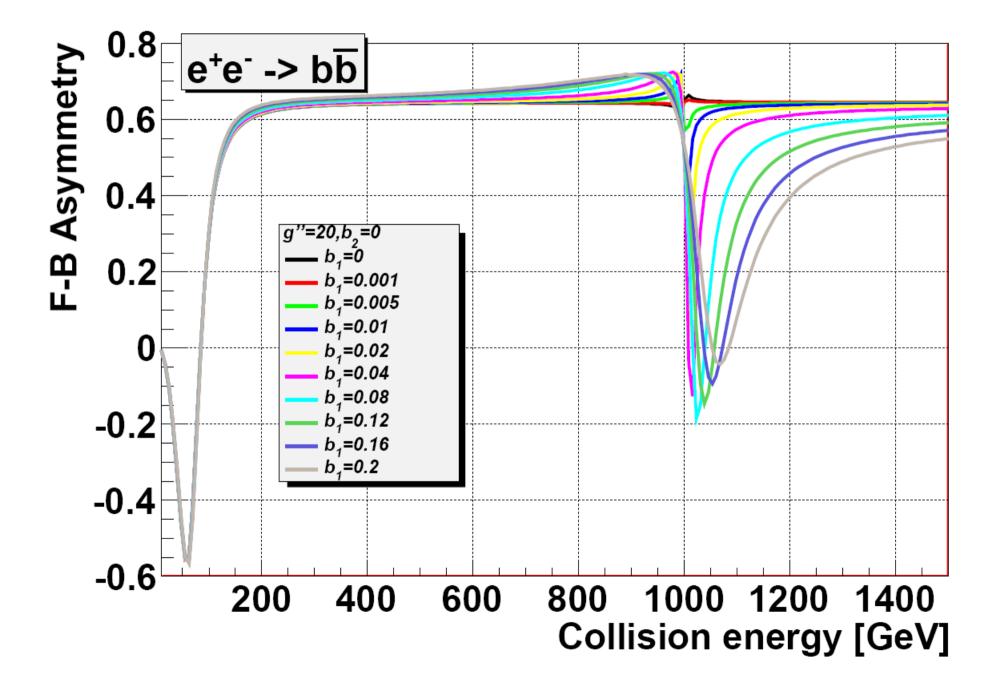
Cross sections and statistical significance R of the model signals with respect to the SM for the studied processes when the integrated luminosity $\mathcal{L} = 100 \text{ fb}^{-1}$. $R_0 = (\sigma_P - \sigma_{SM})/\sqrt{\sigma_{SM}}$.

 $R = \frac{N_P - N_{SM}}{\sqrt{N_{SM}}}$ where N_P and N_{SM} are the numbers of the events of our model and the SM

top-BESS model @ ILC



top-BESS model @ ILC



Conclusion

- top-BESS model as modification of BESS model
- effective description of a Higgsless ESB mechanism accompanied by a hypothetical strong triplet of vector resonances
- motivated by special role of top quark in the ESB mechanism
- BESS model versus top-BESS model
- our resonances decay dominantly to the SM gauge bosons and/or to the third generation of quarks
- smaller, i.e. narrower decay widths of our resonances
- relaxing the L-E limits on the original BESS model`s parameters
- cross sections and statistical significance of signals studied
- properties of our model can be studied at the LHC, ILC colliders
- further investigation is needed (study of backgrounds and the detector reconstruction efficiency)
 work is in progress

Thank you for your attention.