September 2006

Search for a New Vector Resonance in the pp→WWtt+X Channel at LHC

M. Gintner, I. Melo, B. Trpišová University of Žilina

Motivation

An alternative to the SM Higgs boson:

Strong Electroweak Symmetry Breaking

A new strong vector resonance ρ as an isospin triplet (ρ^{\pm}, ρ^{0})

The Model

Modified BESS model -- ρ the only non SM particle Respects the symmetries of the SM Higgs sector: $SU(2)_L \times U(1)_Y$ local, $SU(2)_L \times SU(2)_R$ global

$$L = ig_{\pi} \frac{M_{\rho}}{V} (\pi^{-} \partial^{\mu} \pi^{+} - \pi^{+} \partial^{\mu} \pi^{-}) \rho_{\mu}^{0} + g_{1}^{t} \bar{t} \gamma^{\mu} t \rho_{\mu}^{0} + g_{2}^{t} \bar{t} \gamma^{\mu} \gamma^{5} t \rho_{\mu}^{0}$$
$$g_{\pi} = \frac{M_{\rho}}{2\sqrt{g''}} \qquad g_{1}^{t} = g_{2}^{t} = \frac{g''b_{2}}{4} + O\left(\frac{g^{2}}{g''^{2}}\right)$$

 $g'' \gtrsim 10$ $b_2 \lesssim 0.1$

 g'', b_2 ... coupling constants of the original BESS g ... $SU(2)_L$ coupling constant $v \cong 246$ GeV ... electroweak scale

For the dominant gg channel:

- I. $W^+W^-t\bar{t}$ cross-sections and statistical significance CompHEP
- II. $lv_1 jjbjjbjj$ reconstruction CompHEP – events generation Pythia – decay and hadronization Atlfast – detector effects and reconstruction of the jets ROOT, C++ -- event reconstruction

39(8) diagrams in the dominant gg channel

CompHEP Results

$$R = \frac{|N(\rho) - N(No_{\rho})|}{\sqrt{N(No_{\rho})}}$$

 lv_1 jjbjjbjj Reconstruction One charged lepton channel: 40% of events $W^+W^-t\bar{t} \rightarrow W^+W^-bW^+\bar{b}W^- \rightarrow l\nu_1 ijbjj\bar{b}jj$ **Cuts:** p_T of electron > 30 GeV muon > 20 GeVjets > 25 GeVmass of the W: $m_W \pm 25$ GeV b-tagging efficiency 50% **Reconstruction criterion** $\chi^{2} = (m_{j_{1}j_{2}} - m_{W})^{2} + (m_{j_{3}j_{4}} - m_{W})^{2} + (m_{j_{5}j_{6}} - m_{W})^{2} +$ $(m_{W_1b_1} - m_t)^2 + (m_{W_2b_2} - m_t)^2$

Invariant mass of the WW pair ...

$$m_{WW}^2 = E_{WW}^2 - \vec{p}_{WW}^2$$

$$p_{WW,x} = p_{W_1,x} + p_{W_2,x}$$

Mass of the ρ -resonance

8 diagrams

 $E_{WW} = E_{W_1} + E_{W_2}$

8 diagrams

39 diagrams

Mass of the W boson

Conclusions

For the resonance with $M_{\rho} = 700$ GeV, g"=10, $b_2 = 0.08$:

I. $W^+W^-t\bar{t}$ in the final state – maximum values of R at around 100

II. $lv_l jjbjj\bar{b}jj$ reconstruction

The top quark and the W reconstruction O.K. The ρ reconstruction – 40% of events fall into the ρ peak \rightarrow need to improve the reconstruction algorithm

III. Future work -- $pp \rightarrow tt\bar{t}\bar{t}$ -- much larger cross-section compared to $W^+W^-t\bar{t}$, i.e. larger numbers of events

