TOP-BESS MODEL

AND

ITS PHENOMENOLOGY

<u>M. Gintner</u>^{1,2}, J. Juráň², I. Melo¹

 1 Žilina U.

² IEAP CTU Prague

MFF UK Bratislava, Nov 15, 2011

M. Gintner, J. Juráň, I. Melo top-BESS Model

▶ < ≣ ▶ ≣ ∽ ९ (PRD84, 035013 (2011)

putting things straight beforhand ...

M. Gintner, J. Juráň, I. Melo top-B

top-BESS Model

PRD84, 035013 (2011)

- 4 聞 と 4 臣 と 4 臣 と

putting things straight beforhand ...

<u>M. Gintner</u>, J. Juráň, I. Melo top-

top-BESS Model

PRD84, 035013 (2011)

- 4 同 6 4 日 6 4 日 6

putting things straight beforhand ...

M. Gintner, J. Juráň, I. Melo top-B

top-BESS Model

▶ ৰ ≣ ▶ ≣ পি ৭ ৫ PRD84, 035013 (2011)

・ 同 ト ・ ヨ ト ・ ヨ ト

top-BESS Model

OUTLINE

• = • •

Introduction top-BESS Model

OUTLINE

M. Gintner, J. Juráň, I. Melo

top-BESS Model

3 PRD84, 035013 (2011)

★ ∃ → -

GAUGE PRINCIPLE

 \Rightarrow Gauge Bosons

 \Rightarrow Interactions

 \Rightarrow Renormalizability

・聞き ・ ほき・ ・ ほき

Introduction top-BESS Model

GAUGE PRINCIPLE

Gauge Bosons \Rightarrow

M. Gintner, J. Juráň, I. Melo

top-BESS Model

3 PRD84, 035013 (2011)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Introduction top-BESS Model

GAUGE PRINCIPLE

Gauge Bosons \Rightarrow

Interactions \Rightarrow

э

A 10 - ∢ ≣ ▶

GAUGE PRINCIPLE

 \Rightarrow Gauge Bosons

 \Rightarrow Interactions

⇒ Renormalizability

Introduction top-BESS Model

$SM \rightarrow GP SUCCESS$

SM: $SU(3)_C \times SU(2)_L \times U(1)_Y$

gluons

 W^{\pm} . Z

photon

M. Gintner, J. Juráň, I. Melo

top-BESS Model

æ PRD84, 035013 (2011)

・ロト ・回ト ・ヨト ・ヨト

Introduction top-BESS Model

$SM \rightarrow GP SUCCESS$

M. Gintner, J. Juráň, I. Melo

æ PRD84, 035013 (2011)

(▲ 문) (▲ 문)

$SM \rightarrow GP SUCCESS$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

EW SYMMETRY BROKEN!

fermions:

 $m_t \gg m_b > \ldots > m_e \gg m_{\nu_e}$

weak gauge bosons:

 $M_Z, M_W \approx 100 \text{ GeV}$

 $\mathcal{L} = \mathcal{L}_{kin} + \mathcal{L}_{int}$

- 4 同 2 4 日 2 4 H

EW SYMMETRY BROKEN!

• fermions:

 $m_t \gg m_b > \ldots > m_e \gg m_{\nu_e}$

• weak gauge bosons:

 $M_Z, M_W \approx 100 \; {\rm GeV}$

 $\mathcal{L} = \mathcal{L}_{kin} + \mathcal{L}_{int}$

- 4 同 2 4 回 2 4 回 2 4

EW SYMMETRY BROKEN!

• fermions:

 $m_t \gg m_b > \ldots > m_e \gg m_{\nu_e}$

• weak gauge bosons:

 $M_Z, M_W \approx 100 \; {\rm GeV}$

$$\mathcal{L} = \mathcal{L}_{kin} + \mathcal{L}_{int} + \frac{1}{2}M_{GB}^2 X_{\mu}X^{\mu} + m_f(\bar{\psi}_L\psi_R + \text{h.c.})$$

EW SYMMETRY BROKEN!

• fermions:

 $m_t \gg m_b > \ldots > m_e \gg m_{\nu_e}$

• weak gauge bosons:

 $M_Z, M_W \approx 100 \; {\rm GeV}$

$$\mathcal{L} = \mathcal{L}_{kin} + \mathcal{L}_{int} + \underbrace{\frac{1}{2}M_{GB}^2 X_{\mu}X^{\mu} + m_f(\bar{\psi}_L\psi_R + \text{h.c.})}_{SU(2)_L \times U(1)_Y \text{ broken!}}$$

▲ロ → ▲ 翻 → ▲ 画 → ▲ 画 → の Q @

SAVING THE GAUGE PRINCIPLE

ESB = **spontaneous** symmetry breaking:

 $\mathsf{symm}(\underline{vacuum}) < \mathsf{symm}(\underline{Lagr})$

 $\mathcal{L} = \mathcal{L}_{kin} + \mathcal{L}_{int} + \mathcal{L}_{SSB}$ $SU(2)_L imes U(1)_Y \xrightarrow{SSB} U(1)_{em}$ 3 Goldstone bosons

$$\mathcal{L}_{SSB}=?$$

<u>M. Gintner</u>, J. Juráň, I. Melo t

top-BESS Model

PRD84, 035013 (2011)

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

SAVING THE GAUGE PRINCIPLE

ESB = **spontaneous** symmetry breaking:

 $\mathcal{L} = \mathcal{L}_{kin} + \mathcal{L}_{int} + \mathcal{L}_{SSB}$ $SU(2)_L \times U(1)_Y \xrightarrow{SSB} U(1)_{em}$ 3 Goldstone bosons

$$\mathcal{L}_{SSB}=$$
 ?

<u>M. Gintner</u>, J. Juráň, I. Melo t

top-BESS Model

PRD84, 035013 (2011)

SAVING THE GAUGE PRINCIPLE

ESB = **spontaneous** symmetry breaking:

 $\mathcal{L} = \mathcal{L}_{kin} + \mathcal{L}_{int} + \mathcal{L}_{SSB}$ $SU(2)_L \times U(1)_Y \stackrel{SSB}{\longrightarrow} U(1)_{em}$ 3 Goldstone bosons

$$\mathcal{L}_{SSB}=?$$

M. Gintner, J. Juráň, I. Melo top-BESS Model

PRD84, 035013 (2011)

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → りへ()~

BENCHMARK HYPOTHESIS \rightarrow SM Higgs

• $SU(2)_L$ complex scalar doublet Φ

• $v = \langle 0 | \Phi | 0 \rangle$

<ロ> <同> <同> < 同> < 同>

Higgs boson

M. Gintner, J. Juráň, I. Melo

top-BESS Model

্ৰ≣ ► ≣ ∽ি ৭ ে PRD84, 035013 (2011)

BENCHMARK HYPOTHESIS \rightarrow SM Higgs

• $v = \langle 0 | \Phi | 0 \rangle$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

<u>M. Gintner</u>, J. Juráň, I. Melo

top-BESS Model

্ৰ≣ ► ≣ ∽ি৭০ PRD84, 035013 (2011)

BENCHMARK HYPOTHESIS \rightarrow SM Higgs

<u>M. Gintner</u>, J. Juráň, I. Melo

top-BESS Model

PRD84, 035013 (2011)

HIGGS BOSON ALTERNATIVES

heavy/no Higgs violates unitarity $\approx 1~\text{TeV}$

weakly interacting:

- new forces and particles
- perturbative
- more Higgses, SUSY

strongly interacting:

- new forces and particles
- non-perturbative ightarrow bound states

- TC and its extensions

extra-dimensions:

4D strongly interacting \leftrightarrow 5D weakly interacting

M. Gintner, J. Juráň, I. Melo top

top-BESS Model

PRD84, 035013 (2011)

HIGGS BOSON ALTERNATIVES

heavy/no Higgs violates unitarity $\approx 1~\text{TeV}$

weakly interacting:

- new forces and particles
- perturbative
- more Higgses, SUSY

strongly interacting:

- new forces and particles
- non-perturbative ightarrow bound states
- TC and its extensions

extra-dimensions:

4D *strongly* interacting ↔ 5D *weakly* interacting

<u>M. Gintner</u>, J. Juráň, I. Melo to

top-BESS Model

PRD84, 035013 (2011)

伺 ト く ヨ ト く ヨ ト

HIGGS BOSON ALTERNATIVES

heavy/no Higgs violates unitarity $\approx 1~\text{TeV}$

weakly interacting:

- new forces and particles
- perturbative
- more Higgses, SUSY

strongly interacting:

- new forces and particles
- non-perturbative \rightarrow bound states
- TC and its extensions

extra-dimensions:

4D *strongly* interacting ←→ 5D *weakly* interacting

伺 ト く ヨ ト く ヨ ト

HIGGS BOSON ALTERNATIVES

heavy/no Higgs violates unitarity $\approx 1~\text{TeV}$

weakly interacting:

- new forces and particles
- perturbative
- more Higgses, SUSY

strongly interacting:

- new forces and particles
- non-perturbative \rightarrow bound states
- TC and its extensions

AD strongly interacting ←→ 5D weakly interacting M. Gintner, J. Juráň, J. Melo top-BESS Model PRD84, 035013 (2011) top-BESS Model

OUTLINE

M. Gintner, J. Juráň, I. Melo

top-BESS Model

3 PRD84, 035013 (2011)

★ ∃ →

 $SU(2)_L \times U(1)_Y$ broken dynamically:

$$\begin{split} \mathcal{L} &= \frac{v^2}{2} \mathrm{Tr} \left[(\partial_\mu U^\dagger) (\partial^\mu U) \right] \\ & U = \exp(2i\pi^a \tau^a / v) \end{split}$$

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $SU(2)_L \times U(1)_Y$ broken dynamically:

- ۲ not solvable perturbatively

$$\mathcal{L} = \frac{v^2}{2} \operatorname{Tr} \left[(\partial_{\mu} U^{\dagger}) (\partial^{\mu} U) \right]$$
$$U = \exp(2i\pi^a \tau^a / v)$$

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

3 PRD84, 035013 (2011)

 $SU(2)_L \times U(1)_Y$ broken *dynamically*:

- *not* solvable perturbatively
- chiral effective Lagrangian for Goldstone bosons

nonlinear sigma model

$$\begin{split} \mathcal{L} &= \frac{v^2}{2} \mathrm{Tr} \left[(\partial_\mu U^\dagger) (\partial^\mu U) \right] \\ U &= \exp(2i\pi^a \tau^a / v) \end{split}$$

• ... + resonances

scalar, vector, ..

LHC \rightarrow the *lightest* BSM resonances

M. Gintner, J. Juráň, I. Melo top-BESS Model

▶ < ≣ ▶ ≣ ∽ ९ (PRD84, 035013 (2011)

 $SU(2)_L \times U(1)_Y$ broken dynamically:

- not solvable perturbatively
- chiral effective Lagrangian for Goldstone bosons ۰

nonlinear sigma model

$$\begin{split} \mathcal{L} &= \frac{v^2}{2} \mathrm{Tr} \left[(\partial_\mu U^\dagger) (\partial^\mu U) \right] \\ U &= \exp(2i\pi^a \tau^a / v) \end{split}$$

□ > < = > <

۲ ... + resonances

scalar. vector. ...

3 PRD84, 035013 (2011)

 $SU(2)_L \times U(1)_Y$ broken dynamically:

- not solvable perturbatively
- chiral effective Lagrangian for Goldstone bosons

nonlinear sigma model

$$\begin{split} \mathcal{L} &= \frac{v^2}{2} \mathrm{Tr} \left[(\partial_\mu U^\dagger) (\partial^\mu U) \right] \\ U &= \exp(2i\pi^a \tau^a / v) \end{split}$$

I ≡ →

• ... + resonances

scalar, vector, ...

LHC \rightarrow the *lightest* BSM resonances

HIDDEN LOCAL SYMMETRY

M. Bando, T. Kugo, K. Yamawaki (1984)

Any NL σ M(G/H) is gauge equivalent to "linear" $G_{glob} \times H_{loc}$ model.

HIDDEN LOCAL SYMMETRY

M. Bando, T. Kugo, K. Yamawaki (1984)

Any NL σ M(G/H) is gauge equivalent to "linear" $G_{glob} \times H_{loc}$ model.

TRANSITION TO "U-GAUGE"

$$\nearrow h(x) = \mathrm{e}^{-i\sigma(x)/v} \in H_{loc}$$

linear	U-gauge:	on-linear
$\begin{split} \xi(x) &= \mathrm{e}^{i\pi(x)/v}\mathrm{e}^{i\sigma(x)/v} \\ U &= \xi \; \tau(\xi^{\dagger}) \;\; = \;\; \mathrm{e}^{2i\pi(x)/v} \end{split}$	$\begin{split} \xi(x) &= \mathrm{e}^{i\pi(x)/v} \\ U &= \xi \ \tau(\xi^{\dagger}) &= \mathrm{e}^{2i\pi(x)/v} \end{split}$	U
$G imes H_{loc}$: $h(x) \in H_{loc}$ $\xi \longrightarrow g \xi h(x)$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$H\subset G$
$egin{array}{cccc} U & \longrightarrow & g & U & \tau(g^{+}) \ V_{\mu} & \longrightarrow & h^{\dagger}(x) & V_{\mu} & h(x) + h^{\dagger}\partial_{\mu}h \end{array}$	$egin{array}{rll} U & \longrightarrow & g \; U \; au(g^\dagger) \ oldsymbol{V}_\mu & \longrightarrow & g_h(g,\xi) \; oldsymbol{V}_\mu \; g_h^\dagger(g,\xi) + g_h \partial_\mu g_h^\dagger \end{array}$	
$\mathcal{L} = \frac{v^2}{4} \mathrm{Tr}[(\partial_{\mu} U^{\dagger})(\partial^{\mu} U)]$	$\mathcal{L} = rac{v^2}{4} Tr[(\partial_\mu U^\dagger)(\partial^\mu U)]$	

M. Gintner, J. Juráň, I. Melo

top-BESS M<u>odel</u>

æ PRD84, 035013 (2011)

æ

< ≝ ► <

< 同 ▶
BESS MODEL

BREAKING ELECTROWEAK SYMMETRY STRONGLY

R. Casalbuoni, S. De Curtis, D. Dominici, R. Gatto PL**B155**, 95 (1985), NP**B282**, 235 (1987)

- effective Lagrangian
- HSM + new vector resonances

 $\mathcal{L}_{BESS} = \mathcal{L}_{GB}(W, B, V) + \mathcal{L}_{ESB}(\vec{\pi}, \vec{\sigma}) + \mathcal{L}_{ferm}$

<ロト <部ト < 注ト < 注ト

BESS MODEL

BREAKING ELECTROWEAK SYMMETRY STRONGLY

R. Casalbuoni, S. De Curtis, D. Dominici, R. Gatto PL**B155**, 95 (1985), NP**B282**, 235 (1987)

- effective Lagrangian
- H/SM + new vector resonances

$$\mathcal{L}_{BESS} = \mathcal{L}_{GB}(W, B, V) + \mathcal{L}_{ESB}(\vec{\pi}, \vec{\sigma}) + \mathcal{L}_{ferm}$$

global symmetry:

 $SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(2)_{HLS} \xrightarrow{SSB} SU(2)_{L+R} \times U(1)_{B-L}$

Iocal symmetry:

$$\begin{array}{c|c} SU(2)_L \times U(1)_Y \times SU(2)_{HLS} & \stackrel{SSB}{\longrightarrow} & U(1)_{em} \\ g & g' & g'' & e \end{array}$$

• gauge sector:

$$W^{\pm}, Z = A = V^{\pm}, V^0$$
 ...mixing

- fermion sector:
 - $\diamond \quad \underline{\text{direct}} \text{ cplg:} \quad \dots \quad \underline{bg''} \ \overline{\psi}_L \ \overline{y} \psi_L, \quad \underline{b'g''} \ \overline{\psi}_R \ \overline{y} \psi_R \quad \dots \text{ universal}$
 - \diamond indirect cplg: ... $1/g'' \bar{\psi}(Z,W)\psi$... mixing induced

- 4 同 6 4 回 6 4 回 6 - 回

global symmetry:

 $SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(2)_{HLS} \xrightarrow{SSB} SU(2)_{L+R} \times U(1)_{B-L}$

Iocal symmetry:

 $\begin{array}{ccc} SU(2)_L \times U(1)_Y \times SU(2)_{HLS} & \stackrel{SSB}{\longrightarrow} & U(1)_{em} \\ g & g' & g'' & e \end{array}$

gauge sector:

 $W^{\pm}, Z = A = V^{\pm}, V^0$...mixin

• fermion sector:

 $\diamond \quad \underline{\text{direct}} \text{ cplg:} \qquad \dots \quad \underline{bg''} \ \overline{\psi}_L \ \overline{y} \ \psi_L, \ \underline{b'g''} \ \overline{\psi}_R \ \overline{y} \ \psi_R \qquad \dots \text{ universal}$

 \diamond indirect cplg: ... $1/g'' \bar{\psi}(Z,W)\psi$... mixing induced

global symmetry:

 $SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(2)_{HLS} \xrightarrow{SSB} SU(2)_{L+R} \times U(1)_{B-L}$

Iocal symmetry:

$$\begin{array}{ccc} SU(2)_L \times U(1)_Y \times SU(2)_{HLS} & \stackrel{SSB}{\longrightarrow} & U(1)_{em} \\ g & g' & g'' & e \end{array}$$

gauge sector:

$$W^{\pm}, Z = A = \frac{V^{\pm}, V^0}{\dots$$
 ...mixing

• fermion sector:

 $\diamond \quad \underline{\text{direct}} \text{ cplg:} \qquad \dots \qquad \underline{bg''} \psi_L \ \forall \psi_L, \ \underline{b'g''} \psi_R \ \forall \psi_R \qquad \dots \text{ universal}$

 \diamond indirect cplg: ... $1/g'' \psi(Z,W)\psi$... mixing induced

global symmetry:

 $SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(2)_{HLS} \xrightarrow{SSB} SU(2)_{L+R} \times U(1)_{B-L}$

• local symmetry:

$$\begin{array}{c|c} SU(2)_L \times U(1)_Y \times SU(2)_{HLS} & \stackrel{SSB}{\longrightarrow} & U(1)_{em} \\ g & g' & g'' & e \end{array}$$

gauge sector:

$$W^{\pm}, Z = A = V^{\pm}, V^0$$
 ...mixing

• fermion sector:

 $\diamond \quad \underline{\text{direct}} \text{ cplg:} \qquad \dots \quad \underline{bg''} \, \overline{\psi}_L \, \mathcal{V} \psi_L, \quad \underline{b'g''} \, \overline{\psi}_R \, \mathcal{V} \psi_R \qquad \dots \text{ universal}$

 \diamond indirect cplg: ... $1/g'' \bar{\psi}(Z,W)\psi$... mixing induced

OUTSTANDING TOP QUARK

M. Gintner, J. Juráň, I. Melo top-BESS Model

▶ ৰ ≣ ▶ ≣ ৩৭০ PRD84, 035013 (2011)

(日) (日) (日)

OUTSTANDING TOP QUARK

new physics behind m_t

Extended TC, ...

Topcolor Assisted TC, ...

伺 ト イヨト イヨト

M. Gintner, J. Juráň, I. Melo top-BESS

top-BESS Model

PHYS. REV. D84, 035013 (2011)

PHYS. REV. D84, 035013 (2011)

- gauge sector \equiv BESS
- fermion sector:
 - $\diamond 3^{\sf rd}$ quark generation only
 - \diamond bottom $_R$ vs. top $_R$
 - new fermion terms

 $\dots b_L, b_R$

... p

・ 同 ト ・ ヨ ト ・ ヨ ト …

... λ_L, λ_R

PHYS. REV. D84, 035013 (2011)

- gauge sector \equiv BESS
- fermion sector:
 - $\diamond~3^{\sf rd}$ quark generation only
 - \diamond bottom $_R$ vs. top $_R$
 - ♦ new fermion terms

 $\dots \ b_L, b_R$ $\dots \ p$

 $\dots \lambda_L, \lambda_R$

伺 と く ヨ と く ヨ と

PHYS. REV. D84, 035013 (2011)

- gauge sector \equiv BESS
- fermion sector:
 - $\diamond~3^{\mbox{rd}}$ quark generation only
 - \diamond bottom $_R$ vs. top $_R$
 - ♦ new fermion terms

 $\dots b_L, b_R$

 $\dots p$

伺 ト く ヨ ト く ヨ ト

... λ_L, λ_R

M. Gintner, J. Juráň, I. Melo top-BESS Model

PHYS. REV. **D84**, 035013 (2011)

- gauge sector $\equiv BESS$
- fermion sector:
 - \diamond 3rd quark generation only
 - $bottom_R$ vs. top_R \diamond

 $\dots b_L, b_R$... *p*

∃ >

□ > < = > <

PHYS. REV. D84, 035013 (2011)

- gauge sector \equiv BESS
- fermion sector:
 - ◇ 3rd quark generation only
 ◇ bottom_R vs. top_R
 ◇ new fermion terms
 … λ_L, λ_R

→ Ξ →

top-BESS Model Phenomenology

OUTLINE

M. Gintner, J. Juráň, I. Melo

top-BESS Model

3 PRD84, 035013 (2011)

< ≣ > <

NEW RESONANCE MASSES

• mass of the vector resonance:

$$M_V = \frac{\sqrt{\alpha} g'' v}{2}$$

■ EW gauge bosons → mixing → mass splitting

NEW RESONANCE MASSES

mass of the vector resonance:

$$M_V = \frac{\sqrt{\alpha} \ g'' v}{2}$$

• EW gauge bosons \rightarrow mixing \rightarrow mass splitting

M. Gintner, J. Juráň, I. Melo

3 PRD84, 035013 (2011)

-

DECAY WIDTHS

M. Gintner, J. Juráň, I. Melo top-BESS Model

PRD84, 035013 (2011)

UNITARITY CONSTRAINTS

LOW-ENERGY LIMITS

EXPERIMENT: LEP + SLC + TEVATRON

EWPD ϵ -analysis: ϵ_1 , ϵ_2 , ϵ_3 , ϵ_b , $\Gamma(Z \to b\bar{b})$, $B \to X_s \gamma$, $p\bar{p} \to WZX$

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

LOW-ENERGY LIMITS

EXPERIMENT: LEP + SLC + TEVATRON

EWPD ϵ -analysis: $\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_b, \Gamma(Z \to b\bar{b}), B \to X_s \gamma, p\bar{p} \to WZX$

Intersections of 90% C.L. allowed regions.

 $M_V = 1 \text{ TeV}$ g'' = 10

M. Gintner, J. Juráň, I. Melo

top-BESS Model

PRD84, 035013 (2011)

∃ >

THE DEATH VALLEY

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

THE DEATH VALLEY

direct + indirect cplgs \Rightarrow DV

The Death Valley regions of the $V \rightarrow t\bar{t}/b\bar{b}/tb$ decays.

M. Gintner, J. Juráň, I. Melo top-BE

top-BESS Model

▶ < ≣ ▶ ≣ ∽ ९ (PRD84, 035013 (2011)

THE DEATH VALLEY

direct + indirect cplgs \Rightarrow DV

The Death Valley regions of the $V \rightarrow t\bar{t}/b\bar{b}/tb$ decays.

M. Gintner, J. Juráň, I. Melo top-BE

top-BESS Model

▶ ৰ ≣ ► ≣ ∽ি ৭.0 PRD84, 035013 (2011)

イロン 不聞 とくほとう ほどう

HIDING THE PEAK

<u>M. Gintner</u>, J. Juráň, I. Melo

top-BESS Model

HIDING THE PEAK

 $e^+e^- \rightarrow W^+W^ u\bar{d} \rightarrow W^+Z$ $e^+e^- \rightarrow t\bar{t}$ $u\bar{d} \rightarrow t\bar{b}$ $e^+e^- \rightarrow b\bar{b}$

M. Gintner, J. Juráň, I. Melo

top-BESS Model

HIDING THE PEAK

<u>M. Gintner</u>, J. Juráň, I. Melo

top-BESS Model

HIDING THE PEAK

<u>M. Gintner</u>, J. Juráň, I. Melo

top-BESS Model

WHAT'S NEXT?

- theoretical development
 - low-energy limits
 - scrutinizing the parameter space
 - relation to existing theories
 - ...
- probing tBESS at LHC and ILC
 - Drell-Yan processes at LHC
 - o ...

∃ >

★ ∃ →

DRELL-YAN AT LHC

... PEEKING

<u>M. Gintner</u>, J. Juráň, I. Melo

top-BESS Model

▶ ◀ 볼 ▶ 볼 ∽ ९ (PRD84, 035013 (2011)

<ロ> <同> <同> < 回> < 回>

• effective description of strong ESB new physics needed

• top-BESS — modification of BESS, special role of top quark

- ◊ new SU(2) resonance triplet
- ◊ direct coupling to top and bottom
- \diamond λ -terms
- low-E limits on the fermion parameters relaxed
- the Death Valley effect
- LHC: Drell-Yan processes

回 と く ヨ と く ヨ と

- effective description of strong ESB new physics needed
- top-BESS modification of BESS, special role of top guark
 - \diamond new SU(2) resonance triplet
 - direct coupling to top and bottom \diamond
 - \diamond λ -terms

→ Ξ →

- effective description of strong ESB new physics needed
- top-BESS modification of BESS, special role of top quark
 - ◊ new SU(2) resonance triplet
 - ◊ direct coupling to top and bottom
 - \diamond λ -terms
- low-E limits on the fermion parameters relaxed
- the Death Valley effect
- LHC: Drell-Yan processes

I ≡ →

- effective description of strong ESB new physics needed
- top-BESS modification of BESS, special role of top quark
 - ◊ new SU(2) resonance triplet
 - ◊ direct coupling to top and bottom
 - \diamond λ -terms
- low-E limits on the fermion parameters relaxed
- the Death Valley effect
- LHC: Drell-Yan processes

→ Ξ →

- effective description of strong ESB new physics needed
- top-BESS modification of BESS, special role of top quark
 - ◊ new SU(2) resonance triplet
 - ◊ direct coupling to top and bottom
 - \diamond λ -terms
- low-E limits on the fermion parameters relaxed
- the Death Valley effect
- LHC: Drell-Yan processes

∃ >

I WANT YOU !!!

Enlist Now!

<u>M. Gintner</u>, J. Juráň, I. Melo to

top-BESS Model

PRD84, 035013 (2011)

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶