
Chapter 1

Light as particles

1.1 Introduction

Quantum mechanics is indispensable for the fields of modern optics and pho-
tonics. It provides an important theoretical background for engineers designing
practical applications. Photonic devices are ubiquitous nowadays and quantum
photonics is expected to play an important role in future quantum technologies.

For these reasons it is crucial to design an introductory course on quantum
mechanics for the students of Electrooptics and Photonics at an appropriate
level, building on their previous skills. Here I count on their knowledge of
geometrical and wave optics, some understanding of electromagnetic waves and,
particularly, on their motivation to learn more.

I will start with the historical account of the transition from the classical to
the quantum world, which will lead us to the Schroedinger equation. This initial
phase is rich in physics and I will try to keep mathematical details at a level
which underlines the main ideas and makes it easier to follow them. Subsequent
chapters will take us on a journey from simple quantum systems such as particle
in a box and a quantum harmonic oscillator, to more complex systems which
include hydrogen atom and multi-electron atoms. We will finish the course with
an attempt to address the question ’What is a photon?’ and the modern topic
of entangled states and Bell’s inequality.

1.2 Black body radiation

Any object emits thermal radiation which depends on the temperature T of the
object. At low T , the radiation is mainly in the infrared region. As T increases,
the wavelengths emitted shift to the visible region and the object starts to glow
red and eventually white. Studies of very hot bodies showed that their thermal
radiation spectrum covers all regions from the ulraviolet to the visible and the
infrared one. The intensity I(λ, T ) of radiation is a continuous function of the
wavelength λ, as shown in Fig. 1.1 for three different temperatures for a black
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Figure 1.1: Intensity I(λ, T ) of blackbody radiation as a function of the wave-
length λ, for three different temperatures. The blue dashed line shows the
prediction of the classical calculation for T = 4000 K.

body. A black body is an ideal object that absorbs all radiation hitting its
surface. Is is a convenient approximation since the blackbody radiation does
not depend on the specific properties of the body, just on the temperature of
its surface. Two features of the spectrum stand out. First, the total radiated
energy, given by the area under the curve, significantly increases with tempera-
ture. Second, the peak position defined by the wavelength λmax with maximum
intensity, shifts to the left with temperature. This latter feature is described by
the Wien’s displacement law:

λmax T = 0.2898 .10−2 mK (1.1)

Classical physics failed to explain the blackbody spectrum. The classical
prediction, known as Rayleigh-Jeans law:

I(λ, T ) =
2πckT

λ4
, (1.2)

is plotted in Fig. 1.1 as the blue dashed line for T = 4000 K. The deviation from
the blue solid line is obvious. They agree only for the large wavelengths. For
λ → 0 the Rayleigh-Jeans law predicts infinite radiated intensity, an obvious
conflict with observation.

The correct formula for the spectrum was found by Max Planck in 1900,

I(λ, T ) =
2πhc2

λ5(e
hc
λkT − 1)

. (1.3)



1.3. PHOTOELECTRIC EFFECT 3

The Planck’s law, as it is known, rests on a radical assumption: oscillating
molecules at the surface of the black body do not simply take on any values of
energy as expected in classical physics, only discrete ones are allowed, given by

En = n h f (1.4)

where n = 1, 2, 3, ... is a quantum number, h = 6.626 × 10−34Js is Planck’s
constant and f is the frequency of oscillations of the molecules. The states
of molecules with energies En are called quantum states. This postulate was
soon extended from the oscillating molecules to the discrete energies of the
electromagnetic field, given by the same equation with f being the frequency of
the electromagnetic waves.

The blackbody spectrum represents the beginning of quantum mechanics.
The Planck’s law described the spectrum extremely well but his assumptions
about the quantized states needed further support to become generally accepted.

1.3 Photoelectric effect

The black body spectrum provides an important indirect piece of evidence for
the quantization of light. The photoelectric and the Compton effects provide
stronger, more direct evidence [1, 2].

The photoelectric effect was discovered by Hertz in 1887. He irradiated
a metal electrode (photocathode) inside a vacuum glass tube with ultraviolet
light, and, as a result, a current flowed in the tube between the cathode and the
anode. Lenard proved in 1900 that the current consisted of electrons liberated
from the cathode by ultraviolet (UV) light. He also measured the kinetic energy
of electrons and found that while it varied, for a given frequency f of UV light
it did not exceed a maximum value Emax. Emax was independent of UV light
intensity, instead, it was proportional to the frequency f . If f fell below a
critical frequency fc, electrons were not emitted and the photoelectric effect
disappeared. What did depend on UV light intensity, was the current (the
number of liberated electrons).

These findings were difficult for classical theory to explain. In 1905 Einstein
came with a profound and at the same time simple explanation. In his theory of
the photoelectric effect, he extended Planck’s ideas and proposed that when a
molecule (or oscillating electromagnetic field) changes its state from the one with
energy En to the one with energy En−1, it emits a quantum of electromagnetic
radiation of frequency f and energy E given by

E = En − En−1 = nhf − (n− 1)hf = hf (1.5)

He further assumed that the quantum is completely absorbed by the electron
observed in the photoelectric effect. The quantum behaves as a localized bundle
of energy E, a particle, now known as the photon. The correct equation, Einstein
suggested, is the energy conservation in this process,

Emax = hf −W (1.6)
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where W is energy required for an electron to escape the surface of the metal
photocathode. Thus, electron absorbs energy hf , then, overcoming the surface
barrier it loses energy W and what remains is Emax. This is true for electrons
directly from the surface, an electron from inside the surface loses some more
energy so that its energy is E < Emax. Einstein’s theory explains all features
of the photoelectric effect discovered by Lenard.

1.4 Compton effect

To understand the photoelectric effect, we needed only the energy of the photon,
not its momentum. What could the momentum p be? The total relativistic
energy of a particle with mass m and speed v is

E =
mc2√
1− v2

c2

. (1.7)

Photon, as the particle of light, moves with the speed od light v = c. This
makes the denominator in the above equation equal to zero and if the photon
had mass m > 0, its energy would be infinite. We know however, that its energy
is finite, E = hf . The only way to keep energy in Eq. 1.7 finite, is to set m = 0,
i.e., to assume that the photon is a massless particle. Then we get from another
relativistic formula which relates the particle’s energy E to its momentum p,

E =
√
p2c2 +m2c4 =

√
p2c2 = pc (1.8)

From here we get for the momentum of the photon

p =
E

c
=
hf

c
=
h

λ
. (1.9)

The Compton effect is the scattering of an X-ray beam of a wavelength λ0
off a graphite target. The X-rays scattered by angle θ are observed to have a
wavelength λ1 > λ0 given by

λ1 − λ0 =
h

mc
(1− cos θ) (1.10)

Classical physics failed to explain the effect since according to classical electro-
magnetic theory, the X-ray electromagnetic wave of a frequency f0 = c/λ0 forces
the electron to oscillate with the same frequency f0 and reradiate an X-ray wave
of the yet again frequency f0. Thus the scattered wave should have the same
wavelength λ0 as the incident wave.

Compton used the p = h/λ prescription for the photon momentum plus
momentum conservation in 1924 to explain the effect as the result of a collision
of a quantum (photon) of X-ray radiation (wavelength λ0) with a single electron
of mass m (Fig. 1.2 and Problem 1.4.4).

The lesson we learned from this introduction is that the electromagnetic
radiation exhibits not just wave properties (when it propagates) but also particle
properties (when it interacts). The particle of light is the photon, its energy
E = hf and momentum p = h/λ.
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Figure 1.2: An X-ray photon with energy E0, momentum p0, and wavelength λ0
scatters off an electron of mass m by angle θ. The scattered photon is described
by E1, p1, λ1.

1.4.1 Problem

The temperature of the surface of a human body is t = 35◦C. What is the λmax
for radation from the surface if we assume that the human body is a black body?

1.4.2 Problem

What is the energy and the wavelength of a photon of light of frequency f =
6× 1014 s−1?

1.4.3 Problem

An object of mass m = 2 kg is suspended from a spring with a spring constant
k = 25 Nm−1. The object is pulled from an equilibrium position by A = 0.4 m
and released, which leads to its oscillations about the equilibrium.
a) Find, working within the framework of classical physics, the total energy and
frequency of the oscillations.
b) Assuming that the energy is quantized (quantum oscillator), find the quantum
number n corresponding to the total energy of oscillations found in part a).
c) What is the energy released in the transition from En state to En−1 state?

1.4.4 Problem

Derive the Compton shift equation, 1.10! Hint: use the energy and momentum
conservation.
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1.4.5 Problem

The surface of sodium is illuminated with ultraviolet light with λ = 300 nm.
The energy for an electron to escape the surface is W = 2.46 eV.
a) Find the maximum kinetic energy of photoelectrons Emax.
b) Find the critical wavelength λc = c/fc of the incident light at which the
photoelectric effect appears/disappears.

1.4.6 Problem

X-rays with λ0 = 0.20 nm are scattered off the carbon surface. The scattered
rays are observed at an angle of 45◦ with respect to the incident rays. Find the
wavelength λ1 of the scattered X-rays!



Chapter 2

Particles as waves

2.1 Louis de Broglie

In 1924 Louis de Broglie, who was 24 at the time, realized that asymmetry had
risen between electromagnetic radiation which has both wave and particle prop-
erties, and particles with only particle properties. He explored a revolutionary
possibility (no matter how natural it appears in hindsight) that particles with
mass m > 0 could also behave as waves under some circumstances. What would
the wavelength of these waves be?

De Broglie inverted Eqs. 1.5, 1.9 for the energy and momentum of the photon
to postulate the frequency and wavelength of the particle waves as

f =
E

h
(2.1)

λ =
h

p
(2.2)

The (phase) velocity of propagation of these waves is

vp = λf =
hE

ph
=

√
p2c2 +m2c4

p
> c, (2.3)

that is, greater than the speed of light. This is disturbing for a wave which
is supposed to represent a particle with mass m moving with velocity v < c.
However, if we consider a group of waves, a wave packet localized in space around
the particle, there are in fact, two velocities to describe the group. Besides vf ,
there is also the group velocity vg. The wave packet approach is very useful
here since the mathematics is the same as for classical waves, in particular
electromagnetic waves.

A simple group of waves can be constructed starting with a simple wave (we
follow Ref. [3])

Ψ1(x, t) = sin (kx− ωt) (2.4)

7
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here x is the single space coordinate, t is time, ω = 2πf and k = 2π/λ is the
wave number. This wave propagates with the phase velocity

vp = λf =
ω

k
(2.5)

We now add the second wave with a slightly different wavenumber k + ∆k and
slightly different angular frequency ω + ∆ω:

Ψ2(x, t) = sin [(k + ∆k)x− (ω + ∆ω)t] (2.6)

The sum of the two waves is

Ψ(x, t) = Ψ1(x, t) + Ψ2(x, t)

.
= 2 cos

(∆k x

2
− ∆ω t

2

)
sin (kx− ωt) (2.7)

where we neglected terms proportional to ∆k and ∆ω in the sine term. Ψ(x, t),
depicted in Fig. 2.1 as a function of x at time t = 0, represents an infinite
train of wave packets moving along the positive x-axis. The phase velocity is
controlled by the sine term and in our approximation it remains the same as for
Ψ1(x, t), i.e., vp = ω

k . A single wave packet has a frequency f ′, a wavelength λ′
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Figure 2.1: An infinite train of wave packets shown at t = 0 as a function of x
in arbitrary units.

and a group velocity vg, all determined by the cosine term in Eq. 2.7:

vg = λ′f ′ =
2π

k′
ω′

2π
=

2π
1
2∆k

1
2∆ω

2π
=

∆ω

∆k
(2.8)

In the limit of ∆k,∆ω → 0 we get

vg =
dω

dk
=

d

dk

E

~
=

d

dk

(1

~
√
~2c2k2 +m2c4

)
=
pc2

E
= v (2.9)
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where v is the speed of a relativistic particle with energy E and momentum p.
Obviously, vg = v < c. In the last step we used relativistic expressions

p =
mv√
1− v2

c2

, (2.10)

E =
mc2√
1− v2

c2

. (2.11)

Interpretation of a particle as a wave packet is now on safer ground. The wave
packet is localized with a dimension

∆x =
λ′

2
=

2π

∆k
(2.12)

and the velocity of the packet vg is equal to the particle velocity v. Our classical
thinking would prefer ∆x→ 0 for a pointlike particle, but maybe that is a special
case that we achieve if ∆k →∞.

Note that it is possible to construct a single wave packet instead of the in-
finite train, however, instead of the two waves we used to construct the latter,
we would have to sum infinite number of waves, each with a slightly differ-
ent frequency. The result, a single packet, is nicer than an infinite train but
mathematics needed is more complicated.

2.2 Davisson-Germer experiment

We have a plausible hypothesis that a particle could be represented by a single
wave packet. But why didn’t anyone notice the wave properties of particles until
1929?

An important clue can be obtained from a single slit diffraction experiment
using light (classical electromagnetic waves), Fig. 2.2. A crucial factor which
determines the outcome is the size of the wavelength of light λ relative to the
size of the slit d. If λ << d (Fig. 2.2 a), we see a sharp image of the slit on
the screen consistent with geometrical optics in which a ray of light propagates
along a straight line. If light consisted of particles, the result would be the same.
On the other hand, if λ & d (Fig. 2.2 b), light seems to bend around the slit
and a series of maxima appears on the screen with intensity decreasing with
the distance from the central maximum. The maxima are separated by dark
areas with minimum intensity. This is a diffraction phenomenon in which light
manifests its wave nature.

We have come to an important point:

λ << d light hides its wave nature (2.13)

λ & d light manifests its wave nature (2.14)

What is the typical value of d for a diffraction pattern to appear if λ = 650 nm
(red light)? The λ & d condition is fulfilled for d . 1500 nm in this case.
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Figure 2.2: A single slit experiment. a) If λ << d, we see a sharp image of the
slit on the screen with no diffraction. b) If λ & d, a series of diffraction maxima
appears with intensity decreasing with the distance from the central maximum.

Let us return to our question of why nobody noticed the wave behaviour of
electrons before 1929. De Broglie thought that the wavelength of the electron
could be much smaller than the typical size d of slits in the above experiment or,
generally, than the size od objects that electrons used to interact with. Let us
consider an electron with a rather small kinetic energy Wk = 54 eV (for electrons
with greater energy the wavelength will be smaller) and find its wavelength. We
obtain

λ =
h

p
=

h√
2mWk

= 1.67× 10−10m, (2.15)

which is of the order of the distance d between atoms in a crystal. Clearly,
electrons of this wavelength cannot manifest wave properties on slits and objects
with d ∼ 1500 nm = 1.5× 10−6 m.

However, in 1929 Davisson and Germer used an Ni crystal as a diffraction
grating with the distance between neighbouring atoms d = 2.15× 10−10 m (the
grating parameter) and scattered electrons of the kinetic energy Wk = 54 eV off
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the surface of the crystal. The wavelength of electrons, Eq. 2.15, now meets the
condition λ ∼ d, Fig. 2.3. We know from classical electromagnetic theory that

d
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k = 1

λ d
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diffraction grating

Figure 2.3: Diffraction of electrons after scattering off the Ni crystal surface.

light scattered by the diffraction grating manifests diffraction similar to a single
slit experiment except that the diffraction maxima are narrower, separated by
wider regions of minimum intensity. The maxima are given by

d sin θ = kλ, (2.16)

where θ is the angle at which the maxima of order k = 1, 2, 3, ... are observed.

Using the same equation for electrons, Davisson and Germer observed the
k = 1 maximum at θ = 50◦, yielding λ = d sin 50◦ = 1.65 × 10−10 m, in agree-
ment with Eq. 2.15 within the measurement uncertainty. Further, diffraction
was observed even for very low intensities of an electron beam, when just a sin-
gle electron was emitted by the source and detected by the detector at a time.
After a sufficient number of electrons was detected, the same diffraction pattern
developed. Hence, it is a wave of a single electron that diffracts, not interference
between waves of several electrons.

The typical wave phenomenon of diffraction was thus established also for
particles.
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2.3 Heisenberg uncertainty principle

The wave packet approach of Sec. 2.1 turns out to be very useful also for the
uncertainty principle. If a single wave packet is to represent a free particle, it
seems plausible that the position of the particle must be within the interval ∆x
given by the size of the packet (see Eq. 2.7 and Fig. 2.1)

∆x =
λ′

2
=

2π

2k′
=

4π

2∆k
=

2π

∆k
(2.17)

Here λ′ = 2π/k′ = 4π/∆k is the wavelength associated with the cosine term of
Eq. 2.7. We get from Eq. 2.17

∆x∆k = 2π (2.18)

To get a similar relation for time t and angular frequency ω, we could plot
Ψ(x, t) of Eq. 2.7 as a function of t at x = 0 and get a similar infinite train of
packets along the time axis. The length of the packet would represent the time
of passage of the packet through a point x, that is, the duration of the pulse
∆t. Following the procedure shown in Eq. 2.17, we would get

∆t∆ω = 2π (2.19)

Our previous treatment could be technically improved: it is possible to con-
struct a single packet which is not part of the train in a way which reduces the
factor of 2π on the righthand side of Eqs. 2.18, 2.19 to 1 (Ref. [3]):

∆x∆k = 1 (2.20)

∆t∆ω = 1 (2.21)

Equations 2.20, 2.21 hold for any waves including the classical waves [3].
They might be viewed as uncertainty relations in classical physics. For example,
it follows from Eq. 2.21 that if we transmit radio or TV signals in pulses of
duration ∆t ∼ 10−6 s, then the pulses have the range of frequencies

∆f =
∆ω

2π
=

1

∆t

1

2π
∼ 106 s−1 (2.22)

This range defines the broadcast band. If we used frequency f = 1 MHz for a
broadcast, the whole band could fit just one channel since ∆f = 1 MHz as well.
To accommodate more channels we are forced to broadcast at frequencies much
higher than 1 MHz.

To move from classical waves to particles, i.e. to quantum mechanics, we
use de Broglie relations, Eqs. 2.1, 2.2, to convert ∆k to ∆p and ∆ω to ∆E:

∆k =
2π

∆λ
=

2π

h
∆p =

∆p

~
(2.23)

∆ω = 2π∆f = 2π
∆E

h
=

∆E

~
(2.24)
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Plugging this into Eqs 2.20, 2.21, we obtain Heisenberg uncertainty relations

∆x ∆p ≥ ~ (2.25)

∆t ∆E ≥ ~. (2.26)

The equality sign applies to the wave packet constructed in an optimal way, for
the packets of other shapes the greater-than sign applies.

The Heisenberg uncertainty relation for the position and momentum, Eq. 2.25,
tells us that if we want to localize particle by measuring its position x with un-
limited precision, making the uncertainty ∆x→ 0, the uncertainty in our knowl-
edge of its momentum will grow as a result of the measurement, ∆p → ∞. It
is impossible to know both the position and momentum of a particle with arbi-
trary high precision. In other words, a very precise measurement of x squeezes
the packet and this requires larger ∆k (Eq. 2.17).

We do not typically observe the uncertainty principle in the macroscopic
world because the Planck constant has a very small value. If, e.g., we measure
the position of an object with 1 kg mass with a precision ∆x = 10−4 m, then
∆p = ~/10−4m and hence ∆v = ∆p/m = ~/10−4m/kg = 6.626 × 10−30m/s.
The uncertainty in velocity is too small to observe.

Note, however, that infrared light can be used to determine the position of a
visible-to-the-naked-eye membrane so precisely that the membrane recoils when
the infrared pulse reflects from it, leading to a measurable uncertainty in its
momentum [4].

2.4 The Bohr model of hydrogen

In a familiar school lab exercise, one uses a discharge lamp filled with a gas such
as helium or neon. The gas is heated by an electric current and the lamp emits
light characteristic of the gas. If the light is passed through a diffration grating,
a series of lines (diffraction maxima) appears on the screen - a line spectrum
of helium or neon. Each element has its own spectrum which can be used to
identify the element. As a matter of fact, helium was first seen in the solar
spectrum in 1868 in the form of unknown spectral lines before it was discovered
directly on Earth in 1895.

The spectrum of hydrogen is the simplest one of all elements. In the visible
region it is dominated by four spectral lines at the wavelengths 656.3 nm, 486.1
nm, 434.1 nm, and 410.2 nm, see Fig. 2.4. Johann Balmer found a simple
empirical formula which gives the wavelengths of these lines:

λ =
22

R

( n2

n2 − 22

)
(2.27)

where n = 3, 4, 5, 6... and R = 1.09737× 107 m−1 is the Rydberg constant.
Again, classical physics failed to explain atomic spectra, not even the Balmer

formula. In 1913 Niels Bohr provided an explanation known as the Bohr model
of hydrogen. The Bohr model stands as a fascinating testimony of the transition
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Figure 2.4: The line spectrum of atomic hydrogen - the Balmer series.

from classical physics to radically new quantum mechanics. It is a strange mix-
ture of both theories, mathematically simple enough to be introduced even at
the high school level. The lesson we learn from it is that new theories are typi-
cally formulated step by step over many years aided by experimental discoveries
and ideas contributed by many people.

The Bohr model is defined by the following assumptions (postulates):
1. The negatively charged electron moves about the positively charged nu-

cleus in a circular orbit under the action of the centripetal Coulomb force

F =
mv2

r
=

1

4πε0

e2

r2
(2.28)

where m, e, v is the mass, the size of the charge, and the speed of the electron,
respectively, r the radius of the orbit, ε0 the vacuum electric permitivity. The
charge of the nucleus is also e.

2. The electron is allowed to move only in those orbits which obey the
following equation for the angular momentum L = mvr,

mvr = n~, n = 1, 2, 3, 4, .... (2.29)

3. The electron does not radiate energy when moving in orbits allowed by
Eq. 2.29.

4. The atom radiates energy hf when the electron jumps from a higher
allowed orbit (larger r) to a lower one (smaller r),

hf = Ei − Ef (2.30)

where Ei, Ef are the energies corresponding to the higher and the lower orbits,
respectively.

The strangest postulate is the second one which introduces the so-called
quantization of the angular momentum L: only discrete values, L = n~, are al-
lowed. It was not clear why this should be true even though this quantization did
lead to the correct prediction of the Balmer formula, Eq. 2.27 (Problem 2.4.3).
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In 1924 Louis de Broglie interpreted the second postulate as a natural conse-
quence of the wave properties of the electron. It is crucial for this interpretation
to understand classical standing waves, e.g., on a guitar string, Fig. 2.5. So
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Figure 2.5: Standing waves on a guitar string. The first three harmonics (n =
1, 2, 3).

far we have considered only the travelling waves in the form of freely moving
wave packets. The electron in the atom is, however, not free but rather bound.
Thus, the wave associated with the electron is forced to travel along the same
trajectory again and again, possibly creating standing waves in analogy with the
standing waves on a string. These waves can have only certain discrete values
of the wavelength given by

λ =
2L

n
, n = 1, 2, 3, 4, .... (2.31)



16 CHAPTER 2. PARTICLES AS WAVES

The n = 1 wave is called the first harmonic, n = 2 the second harmonic etc.1 If
we now rewrite the second postulate in terms of momentum p = mv,

p r = n~, (2.32)

and make a substitution p = h/λ, we obtain

λ =
2πr

n
. (2.33)

Comparing this with Eq. 2.31, we can see that the circumference of the electron’s
orbit, 2πr, plays the role of 2L, twice the length of the string. On the string,
the travelling wave returns to the beginning after it covers the distance of 2L
(and creates the standing wave via interference), in the atom the same happens
after the wave covers the distance of 2πr. Indeed, it seems plausible that the
second postulate stems from our representation of the electron as the standing
wave inside the atom.

The image of the electron standing wave goes against the naive picture of a
pointlike particle moving about the nucleus along the circular orbit. As we have
seen with the wave packets, the position of a particle is uncertain at the level
of the width of the packet. Here, the uncertainty is of the order of the atom’s
size since the standing wave fills the volume of the atom. We have made some
progress but the overall picture of the hydrogen atom is still covered in a haze.
To learn more, we need to move on to the Schrödinger equation.

2.4.1 Problem

Use Eqs. 2.28, 2.29 to derive the radii r of the allowed orbits of the hydrogen
atom. The correct answer is

r = rn =
4πε0~2

me2
n2, n = 1, 2, 3, 4, .... (2.34)

2.4.2 Problem

Use Eqs. 2.28, 2.29 to derive the energies E of the allowed orbits of the hydrogen
atom. The classical formula for the total energy (the sum of kinetic and potential
energies, Wk + U) is

E = Wk + U =
1

2
mv2 − 1

4πε0

e2

r
. (2.35)

The correct answer is

E = En = −1

2

me4

(4πε0)2~2
1

n2
= −13.6

n2
eV, n = 1, 2, 3, 4, .... (2.36)

1We might call this phenomenon classical quantization although it could be misleading
since it is just the classical analogy with the quantization in quantum mechanics.
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2.4.3 Problem

Use Eqs. 2.30 and 2.36 to derive the Balmer formula, Eq. 2.27!

2.4.4 Problem

a) Find the photon with the largest wavelength in the Balmer series and its
energy.
b) Find the photon with the smallest wavelength in the Balmer series and its
energy.
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Chapter 3

The Schrödinger equation

3.1 A path to the Schrödinger equation

In preparation for the Schrödinger equation, we will show how one might guess
the well-known wave equation for the electromagnetic field, i.e., for the photon.
The photon travels in the vacuum with the speed of light c = λf = ω/k so that

ω = kc. (3.1)

Hence, the correct differential equation should be consistent with Eq. 3.1 and
give simple solutions of the type Ψ(x, t) = sin (kx− ωt), from which we already
know how to construct the wave packets. We will now speculate about the
proper form of the equation. One can exclude terms such as Ψ(x, t)2,Ψ(x, t)3, ...
since they do not allow the superposition of waves required by various interfer-
ence and diffraction phenomena (and the wave packets). On the other hand,
linear terms with partial derivatives with respect to x and t are allowed,

∂

∂t
Ψ(x, t) = −ω cos (kx− ωt) (3.2)

∂2

∂t2
Ψ(x, t) = −ω2 sin (kx− ωt) (3.3)

∂

∂x
Ψ(x, t) = k cos (kx− ωt) (3.4)

∂2

∂x2
Ψ(x, t) = −k2 sin (kx− ωt) (3.5)

One can easily see that Eq. 3.1 is consistent with

∂2

∂t2
Ψ(x, t) = c2

∂2

∂x2
Ψ(x, t). (3.6)

We can recognize this as the wave equation for the electromagnetic field where
Ψ(x, t) represents one of the components of the electric (or magnetic) field ~E.

19
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This is not a rigorous derivation, just a plausible guess, one which paves the
way for the Schrödinger equation.

Let us now consider a particle with mass m > 0. Instead of E = pc, we have

E =
√
p2c2 +m2c4. (3.7)

After running into difficulties with Eq. 3.7, Schrödinger decided to simplify the
task and instead of a relativistic quantum equation sought a nonrelativistic one,
based on the total mechanical energy

E =
p2

2m
+ U(x, t) (3.8)

where U(x, t) is the potential energy.
As a first step, he assumed that the particle is non-interacting, described by

the wave Ψ(x, t) = sin (kx− ωt) and U(x, t) = const. We will now repeat the
procedure we have used to find the wave equation for the electromagnetic field.
Substituting E = hf and p = h/λ into Eq. 3.8 and using ω = 2πf , λ = 2π/k,
we get

~ω =
~2k2

2m
+ U(x, t) (3.9)

It turns out that it is not possible to find the right combination of partial deriva-
tives of Eqs. 3.2 - 3.5 with Ψ(x, t) = sin (kx− ωt), which would be consistent
with Eq. 3.9. Schrödinger was forced to try instead

Ψ(x, t) = a cos (kx− ωt) + b sin (kx− ωt) (3.10)

and finally succeeded with a = 1 and b = i so that the quantum wave for a free
particle, known as the wave function, became a complex function

Ψ(x, t) = cos (kx− ωt) + i sin (kx− ωt) = ei(kx−ωt), (3.11)

the solution of the famous Schrödinger equation

i~
∂

∂t
Ψ(x, t) = − ~2

2m

∂2

∂x2
Ψ(x, t) + U(x, t)Ψ(x, t) (3.12)

As a final and very nontrivial point, Schrödinger generalized his treatment
postulating that the same equation holds also for the general case of U(x, t) 6=
const, i.e., for a particle that is not free.

3.2 Interpretation of the wave function

The Schrödinger equation describes the time development and the distribution
in space of the wave function Ψ(x, t). But what is the meaning of the wave
function? We described a free particle as a wave packet with a group velocity
equal to the velocity of the particle. It seems natural to assume that the particle
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is somewhere inside the packet where Ψ(x, t) > 0. We will now give a more
precise meaning to this vague idea.

In Sec. 2.2 we have seen that the diffraction pattern in the Davisson-Germer
experiment developed even at very low intensities of an electron beam, when just
a single electron was emitted by the source. We concluded that it is a wave of a
single electron that diffracts, not interference between waves of several electrons.
But does this wave have a physical existence similar to water waves? We could
arrange a large number of electron detectors in a half-circle to cover all angles
θ in the experiment simultaneously to see what happens. If the electron’s wave
function behaved as a water wave, it would reach all detectors and presumably
leave a signal in each of them in proportion to its amplitude at a given θ. The
single electron would be present in all detectors: more present in the detectors at
θ = 0◦ and θ = 50◦ and less present at other angles. That was how Schrödinger
originally interpreted the wave function. In reality, only one of the detectors
detects the whole of a single electron at a time. It is impossible to predict
which detector it will be, we can only assign the probability of detection to each
detector based on the diffraction pattern of the Davisson-Germer experiment,
with the highest probabilities at θ = 0◦ and θ = 50◦.

This brings us to the probability interpretation due to Max Born, published
in 1926 before the Davisson-Germer experiment (1929). The wave function does
not have a physical existence in the sense that water waves do. It is a probability
wave related to the probability with which we can detect a particle at a point in
space and time. In particular, Born suggested and supported with arguments
that the probability1 dP for a particle to be found within the interval (x, x+dx)
at time t, is given by

dP = ρ(x, t) dx = Ψ∗(x, t)Ψ(x, t) dx, (3.13)

where ρ(x, t) = Ψ∗(x, t)Ψ(x, t) is the probability per unit length (the probability
density) and Ψ∗(x, t) is the complex conjugate of Ψ(x, t). It is easy to show that
ρ(x, t) is real, as it should be. If Ψ(x, t) = R(x, t) + i Im(x, t) = R+ i I, then

ρ(x, t) = Ψ∗(x, t)Ψ(x, t) = (R− i I).(R+ i I) = R2 + I2. (3.14)

The total probability to find a particle anywhere along the x-axis is

P =

∫ ∞
−∞

ρ(x, t) dx = 1. (3.15)

3.3 Expectation values and operators

It is a postulate of quantum mechanics that the wave function contains all
information about a particle or a quantum system such as, e.g., a hydrogen
atom. All means all: not just information about (the probability of) its position
but also about its energy, momentum and other quantities. Here we will show
how this vital knowledge can be extracted from the wave function.

1We show this for a particle moving in one direction.
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The expectation value of x is postulated as

x̄ =

∫ ∞
−∞

x ρ(x, t) dx =

∫ ∞
−∞

Ψ∗(x, t) xΨ(x, t) dx. (3.16)

The value of x in the integrand is weighted by the probability of observing that
value. After we integrate, we obtain the average of all possible values of x.
Likewise, for the expectation value of x2 we get

x2 =

∫ ∞
−∞

Ψ∗(x, t) x2 Ψ(x, t) dx. (3.17)

The expectation value of the potential energy is

U(x, t) =

∫ ∞
−∞

Ψ∗(x, t) U(x, t) Ψ(x, t) dx. (3.18)

The expectation value of momentum is a bit different. The expression is still as
expected,

p̄ =

∫ ∞
−∞

Ψ∗(x, t) pΨ(x, t) dx, (3.19)

however, the integrand must be expressed as a function of x and t and it is not
obvious how one can do that with p since once we know x, p cannot be known
due to the uncertainty principle. We can find a way around if we consider a free
particle with Ψ(x, t) = ei(kx−ωt). For a partial derivative with respect to x we
have

∂Ψ

∂x
= ikei(kx−ωt) = i

p

~
ei(kx−ωt) = i

p

~
Ψ. (3.20)

From here we get multiplying both sides by −i~

pΨ = −i~ ∂

∂x
Ψ. (3.21)

This suggests an association between p and the operator p̂ = −i~ ∂
∂x . We are

led to postulate

p̄ =

∫ ∞
−∞

Ψ∗(x, t) p̂Ψ(x, t) dx =

∫ ∞
−∞

Ψ∗(x, t) (−i~)
∂

∂x
Ψ(x, t). (3.22)

The operator of kinetic energy is

Ŵk =
1

2m
p̂2 =

1

2m
p̂p̂ = − ~2

2m

∂2

∂x2
(3.23)

and the operator of the total energy E, the so-called Hamiltonian, is

Ĥ = Ŵk + Û(x, t) = − ~2

2m

∂2

∂x2
+ U(x, t). (3.24)
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In general, the expectation value of quantity A is

Ā =

∫ ∞
−∞

Ψ∗(x, t) ÂΨ(x, t) dx. (3.25)

A quantum operator2 Â corresponds to each classical quantity A. As we have
seen, the operators for quantities x, f(x), U(x, t) are equal to these quantities,

x̂ = x, f̂(x) = f(x), Û(x, t) = U(x, t). For quantities which depend on p, we
replace p with p̂ = −i~ ∂

∂x .

Finally, let us consider an operator Â. If a function f exists for which

Âf = af (3.26)

where a is a constant, then f is an eigenfunction of Â and a is the corresponding
eigenvalue. It is a postulate of quantum mechanics that a physical quantity A
can take on only those values which are the eigenvalues of the operator Â.

3.4 The time-independent Schrödinger equation

The Schrödinger equation is time dependent as manifested by the presence of
time t,

i~
∂

∂t
Ψ(x, t) = − ~2

2m

∂2

∂x2
Ψ(x, t) + U(x, t)Ψ(x, t). (3.27)

If the potential energy does not depend on time, U(x, t) = U(x), we can look for
solutions of the time-dependent Schrödinger equation, the so-called stationary
states, in the form

Ψ(x, t) = ψ(x) Φ(t). (3.28)

Stationary states are states for which Φ(t) = e−iωt and hence the probability
density is independent of time:

ρ = Ψ∗(x, t)Ψ(x, t) = ψ∗(x)ψ(x)e+iωte−iωt = ψ∗(x)ψ(x). (3.29)

We will now show that Φ(t) = e−iωt for U(x, t) = U(x). Substituting Eq. 3.28
into Eq. 3.27, we obtain

− ~2

2m
Φ(t)

∂2

∂x2
ψ(x) + U(x) ψ(x) Φ(t) = i~ ψ(x)

∂

∂t
Φ(t). (3.30)

Dividing both sides by ψ(x)Φ(t) we obtain

1

ψ(x)

[
− ~2

2m

∂2

∂x2
ψ(x) + U(x)ψ(x)

]
= i~

1

Φ(t)

∂

∂t
Φ(t). (3.31)

2A technical note: in quantum mechanics these operators are hermitian, Â† = Â.
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The left-hand side is a function of x and the right-hand side is a function of t
with the consequence that both sides must be equal to the same constant C,

− ~2

2m

∂2

∂x2
ψ(x) + U(x)ψ(x) = Cψ(x), (3.32)

i~
∂

∂t
Φ(t) = CΦ(t). (3.33)

The solution of Eq. 3.33 is

Φ(t) = e−i
C
~ t. (3.34)

The constant C/~ is the angular frequency of oscillations, ω. From de Broglie
relations we know that ω = E/~, hence C is energy, C = E. Eq. 3.32 now
becomes the time-independent Schrödinger equation

Ĥ ψ(x) = E ψ(x), (3.35)

where

Ĥ = Ŵk + Û = − ~2

2m

∂2

∂x2
+ U(x) (3.36)

is the energy operator, the Hamiltonian, the sum of kinetic energy operator Ŵk

and potential energy operator Û = U(x). The time-independent Schrödinger
equation is the equation for the eigenvalues E and eigenfunctions ψ(x) of the
Hamiltonian Ĥ (compare with Eq. 3.26).

To conclude, stationary states have the form

ψ(x, t) = ψ(x)e−i
E
~ t (3.37)

where ψ(x) is the solution of the time-independent Schrödinger equation, the
eigenfunction of the Hamiltonian. In the following chapters we will seek this
solution for different systems of increasing complexity, starting with particle in
a box and continuing with harmonic oscillator and hydrogen atom.



Chapter 4

Two simple quantum
systems

4.1 Particle in a box

The simplest quantum system is particle in an infinite square well (a box), see
Fig. 4.1. The potential energy U(x) = 0 for 0 < x < L and U(x) = ∞ for
x = 0 and x = L. Once the particle is in the well, it is trapped inside since
when it approaches the walls it is reflected back by the infinite energy barrier.
Our motivation to study this system is primarily due to its mathematical sim-
plicity, however, from a practical point of view, certain organic molecules form
linear strings of length L and the motion of an electron along the string can
be approximately described as that of the particle in a box. We will show now
that unlike a classical particle, the particle in the well can occupy only certain
discrete energy levels, the lowest ones indicated in Fig. 4.1 as E1, E2 and E3.

The potential energy U(x) is independent of time, hence the wavefunction
has the form

ψ(x, t) = ψ(x)e−i
E
~ t (4.1)

with ψ(x) being the solution of the time-independent Schroedinger equation

Ĥψ(x) = Eψ(x). (4.2)

Recalling that

Ĥ = Ŵk + Û(x), (4.3)

we obtain for 0 < x < L (where U(x) = 0)

− ~2

2m

d2

dx2
ψ(x) = E ψ(x). (4.4)

25
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Figure 4.1: Infinite square well with the lowest three quantum levels (energies
E1, E2, E3) that a particle can occupy indicated in red.

After rearrangement our equation takes the form

d2

dx2
ψ(x) +

2mE

~2
ψ(x) = 0. (4.5)

Outside 0 < x < L, ψ(x) has to vanish since the particle cannot penetrate
through the infinite barriers. Thus, our boundary condition will be

ψ(0) = ψ(L) = 0. (4.6)

The solution of Eq. 4.5 has the form (as can be easily verified)

ψ(x) = A sin
(√2mE

~2
x
)

+B cos
(√2mE

~2
x
)
. (4.7)

The boundary condition ψ(0) = 0, which the solution has to respect, requires
that B = 0 and only the first part with constant A survives. The second
boundary condition, ψ(L) = 0, forces us either to A = 0 with trivial solution
ψ(x) = 0 (particle is not in the well), or to a nontrivial solution with a special
condition for energy E,√

2mE

~2
L = n π, n = 1, 2, 3, 4, ..., (4.8)

or,

En =
π2~2

2mL2
n2 n = 1, 2, 3, 4, .... (4.9)
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We interpret this result as quantization of energy inside the infinite square well.
Only positive integer values of n are allowed, implying that energy can take only
discrete values. The minimum energy,

E1 =
π2~2

2mL2
> 0, (4.10)

so one cannot have quantum particle in a box with E = 0. This conclusion is
also supported by Heisenberg uncertainty relation,

∆x ∆p ≥ ~. (4.11)

Uncertainty in position is in our case

∆x = L. (4.12)

Uncertainty ∆p in the minimum energy state follows from

p21 = 2mE1 =
π2~2

L2
(4.13)

which suggests that p1 = ±π~/L, leading to uncertainty

∆p = 2|p1| =
2π~
L
. (4.14)

Plugging both uncertainties (Eqs. 4.12, 4.14) into Eq. 4.11,

L
2π~
L

= 2π~ ≥ ~. (4.15)

The minimum energy state (as all higher quantum states) thus obeys the un-
certainty relation. However, a hypothetical state with E = 0 has p21 = 0 and
∆p = 0 , violating Eq. 4.11. The uncertainty relation does not allow E = 0
state. This is strikingly different from a classical particle in a box. A marble
ball inside an empty glass can, of course, sit still (E = 0) at the bottom. The
quantum particle is always in motion.

Let us return now to our solution in Eq. 4.7. Using Eq. 4.9 and B = 0, we
get for the eigenfunctions

ψn(x) = A sin
(nπ
L
x
)
, n = 1, 2, 3, 4, .... (4.16)

According to the probability interpretation of the wavefunction, the probability
density integrated over all x has to be equal to one,∫ ∞

−∞
|ψ(x, t)|2dx =

∫ ∞
−∞

ψn(x)∗ψn(x)e+i
E
~ te−i

E
~ tdx (4.17)

=

∫ ∞
−∞

ψn(x)∗ψn(x) dx = 1.
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Figure 4.2: Eigenfunctions for the four lowest energy states of the infinite square
well.

Substituting from Eq. 4.16,∫ ∞
−∞

ψn(x)∗ψn(x)dx = A2

∫ L

0

sin2
(nπ
L
x
)
dx = A2L

2
= 1, (4.18)

which is true only if A =
√

2/L. The final form of eigenfunctions is

ψn(x) =

√
2

L
sin
(nπ
L
x
)
. (4.19)

We plot ψn(x) for n = 1, 2, 3, 4 in Fig. 4.2. The eigenfunctions ψn(x) have the
same mathematical form with respect to position x as the classical vibrations
of the guitar string attached at x = 0 and x = L, i.e., standing waves,

yn(x, t) = A′ sin(kx− ωt) +A′ sin(kx+ ωt) (4.20)

= 2A′ sin
(nπ
L
x
)

cos(ωt)

where yn(x, t) is the displacement of the string from equilibrium, k = 2π/λn,
ω = vk = 2π/T is angular frequency of vibrations, and

λn =
2L

n
, n = 1, 2, 3, 4, ... (4.21)
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Figure 4.3: Vibrating mass m on a spring with constant k representing classical
harmonic oscillator.

In particular, ψ1 (y1) represents fundamental vibration of the string with
fundamental frequency f1 = v/λ1, or the first harmonic, ψ2 represents vibration
of the second harmonic etc. The physics of particle in a infinite quantum square
well is mathematically equivalent to the physics of classical musical instruments.

4.2 Classical harmonic oscillator

If a mass m, attached to a spring with a spring constant k, is pulled from its
equilibrium position at x = 0 down to x = −A and released, it will be driven
back and exercise oscillations about the equilibrium (Fig. 4.3).

The force is given by the Hooke’s law as Fx = −kx, leading to the differential
equation

m
d2x(t)

dt2
= −kx(t) (4.22)

with the solution

x(t) = A cos(ωt+ φ), where ω =

√
k

m
(4.23)

and φ is a phase constant. Typically, it is sufficient to show x(t) to understand
the classical harmonic oscillations, however, we would like to determine some-
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Figure 4.4: This graph shows the time t(x) corresponding to the position x of
the classical harmonic oscillator during half a period. The vibration starts at
x = A and proceeds through the equilibrium at x = 0 to x = −A. A = 1m and
ω = 1s−1.

thing else, the probability that we find the oscillator at (x, x+dx) when we look
at it at random time. For that purpose we invert Eq. 4.23 to get the time t at
which the oscillator was at the position x,

t(x) =
1

ω
arccos(

x

A
)− φ

ω
. (4.24)

Function t(x) is plotted in Fig. 4.4 for A = 1m, ω = 1s−1, and φ = π
2 . The

oscillator starts its vibration at t = − π
2ω when it is at x = A, later, for t = 0, it

is at x = 0 and, finally, for t = π
2ω it arrives at x = −A. It spends most of the

time near the two boundaries x = ±A when its velocity is approaching zero.
Probability dP to find the oscillator at (x, x+dx), which we derive here for a

later comparison with the corresponding probability for the quantum oscillator,
is given by the time dt it spends there divided by the total time T/2 it takes to
oscillate from x = A to x = −A,

dP =
dt

T/2
=
| dtdx |dx
T/2

=
| dtdx |dx

π
ω

=
ω

π
| dt
dx
|dx = ρc dx, (4.25)

with classical probability density ρc given by

ρc =
ω

π
| dt
dx
| = ω

π
| d
dx
t(x)|. (4.26)
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The absolute value of d
dx t(x) is needed since the derivative is negative (with

increasing x we go back in time towards x = A where the oscillations began).
Taking the derivative of Eq. 4.24 we get

ρc =
1

πA
√

1− x2

A2

. (4.27)

We can easily check that the total probability P to find the oscillator anywhere
between x = −A and x = A is

P =

∫ A

−A

dx

πA
√

1− x2

A2

= 1, (4.28)

as expected.
Finally, the potential energy of the oscillator is given by

U(x) =
1

2
kx2. (4.29)

4.3 Quantum oscillator

The quadratic dependence of the potential energy on x, found for the mass on a
spring represents a wider class of physical systems. Atoms in the crystal lattice
can vibrate about their equilibrium positions and so can atoms in molecules.
In both cases, the potential energy is approximated for small vibrations by Eq.
4.29. However, instead of the classical solution (Eqs. 4.22, 4.23), for atoms
and molecules we have to solve Schroedinger equation with the potential energy
operator Û(x) = 1

2kx
2 = 1

2mω
2x2. Since Û(x) is independent of time, the

wavefunction has the form

ψ(x, t) = ψ(x)e−i
E
~ t (4.30)

with ψ(x) being the solution of the time-independent Schroedinger equation

Ĥψ(x) = Eψ(x). (4.31)

The Hamiltonian operator is

Ĥ = − ~2

2m

∂2

∂x2
+

1

2
mω2x2, (4.32)

so that Eq. 4.31 takes the form

− ~2

2m

∂2

∂x2
ψ(x) +

1

2
mω2x2ψ(x) = Eψ(x) (4.33)

We now multiply both sides by − 2m
~2 ,

∂2

∂x2
ψ(x)− m2ω2

~2
x2ψ(x) +

2m

~2
Eψ(x) = 0. (4.34)
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With two more substitutions,

y = a
1
4x =

(m2ω2

~2
) 1

4x,

α =
2E

~ω
, (4.35)

we obtain

∂2

∂y2
ψ(y) +

(
α− y2

)
ψ(y) = 0. (4.36)

We first find the asymptotic form that ψ(y) takes for y → ±∞. In this limit
α� y2 and Eq. 4.34 simplifies to

∂2

∂y2
ψ∞(y)− y2ψ∞(y) = 0 (4.37)

where ψ∞(y) is the asymptotic form of ψ(y). The mathematical solution for
y →∞ is

ψ∞(y) = C1e
y2

2 + C2e
− y

2

2 . (4.38)

The probabilistic interpretation of the wavefunction,
∫∞
−∞ ψ∗(y)ψ(y)dy = 1,

requires that ψ∞(y) must vanish for y →∞, implying C1 = 0 and

ψ∞(y) = C2e
− y

2

2 . (4.39)

Knowing the asymptotic behavior, we look for the solution of Eq. 4.36 in the
form

ψ(y) = g(y)e−
y2

2 , (4.40)

which, upon inserting in Eq. 4.36, yields

d2

dy2
g(y)− 2y

d

dy
g(y) + (α− 1)g(y) = 0, (4.41)

known as the Hermite differential equation whose solution is sought as an infinite
power series

g(y) = A0 +A1y +A2y
2 +A3y

3 + ... =

+∞∑
n=0

Any
n (4.42)

with unknown coefficients An. Substituting the power series into Eq. 4.41, we
obtain after some rearrangements

+∞∑
n=0

[
(n+ 2)(n+ 1)An+2 − (2n+ 1− α)An

]
yn = 0. (4.43)
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If this equation is to hold for any y, we have to demand that the term in the
square brackets is zero for all n, yielding the recursion relation

An+2 =
2n+ 1− α

(n+ 2)(n+ 1)
An, (4.44)

which can be used to calculate coefficients A2, A3, A4, ....An if we know A0, A1.
An arbitrary value of α leads to a truly infinite series of Eq. 4.42 with all

coefficients An nonzero. As shown in, e.g., [3, 5], the consequence is that ψ(y)
diverges,

lim
y→∞

ψ(y) = g(y)e−
y2

2 = ∞. (4.45)

Once again, the proper probabilistic normalization,
∫∞
−∞ ψ∗(y)ψ(y)dy = 1,

forces us to choose the finite series from the most general mathematical solution
of Eq. 4.42. This is achieved by demanding

α = 2n+ 1. (4.46)

If, e.g., n = 2 (α = 5), the only nonzero even coefficients are A0 and A2 since
for n = 2 we get from Eq.4.44 A4 = 0. At the same time the odd coefficients are
eliminated by the choice A1 = 0. Likewise, if n is odd, only the finite number
of odd An coefficients survive and the even coefficients are eliminated by the
choice A0 = 0.

Equation 4.46 has nontrivial consequences. Since α = 2E
~ω , we get the quan-

tization of the energy of the harmonic oscillator,

E = En = ~ω(n+
1

2
), n = 0, 1, 2, 3, ..... (4.47)

For each En we have a different solution of Eq. 4.36,

ψn = g(y)e−
y2

2 = NnHn(y)e−
y2

2 , (4.48)

where Hn(y) are Hermite polynomials and Nn are normalization constants,

Nn = (
mω

~π
)

1
4 (2nn!)−

1
2 . (4.49)

The Hermite polynomials for n = 0, 1, 2, 3 and 10 are shown explicitly in Tab.
4.3.

In Fig. 4.5 we plot eigenfunctions of the quantum harmonic oscillator for
n = 0, 1, 2, 3 and 10 as functions of position x. To be specific, we chose a
vibrating CO molecule with k = 187 Nm−1 and reduced mass m = 1.14×10−26

kg. We also plot (see bottom right) the probability density |ψ10|2 for a quantum
harmonic oscillator at n = 10 and the corresponding probability density for a
classical oscillator of the same energy.
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n Hn(y) En
0 1 1

2~ω
1 2y 3

2~ω
2 4y2 − 2 5

2~ω
3 8y3 − 12y 7

2~ω
... ... ...
10 1024 y10 − 23040 y8 + 161280 y6 − 403200 y4 21

2 ~ω
+302400 y2 − 30240

Table 4.1: Hermite polynomials

4.4 Classical versus quantum oscillators

There are important differences between the classical and the quantum oscilla-
tor.

1. The classical oscillator can take on any value of energy E, the quantum
one just discrete ones En = (n+ 1

2 )~ω. A direct proof of the latter are vibrational
spectra of molecules and of atoms in the crystal lattices. An indirect proof is
offered by the specific heat capacities which grow abruptly with temperature as
vibrational degrees of freedom are excited.

2. The quantum oscillator, unlike the classical one, cannot be stopped - it
has a nonzero energy in the lowest energy state,

E0 =
1

2
~ω, (4.50)

responsible for vibrations even at zero temperature (T = 0).
The zero-point vibrations were proven by R. W. James in 1929 during his

studies of the light diffusion on inhomogeneities in the crystals. The diffusion
in an ideal monocrystal is due to the vibrations of atoms in the crystal lattice
and for a classical oscillator it should vanish in the limit T → 0. James has
shown that diffusion persisted in this limit, the behaviour consistent with the
existence of the zero-point vibrations.

The zero-point energy is also responsible for the fluidity of 3He and 4He
at T → 0. The small mass m of the helium atom leads to a large value of

E0 = 1
2~
√

k
m which overwhelms weak attractive forces between helium atoms

and melts any lattice.
3. The quantum oscillator can be found beyond the limit set by the ampli-

tude A of the classical oscillations, since eigenstates ψn are nonzero for |x| > A,
see Fig. 4.5.

4. The probability density, shown explicitly in Fig. 4.5 bottom right for n =
10 state, highlights another difference between classical and quantum vibrations.
For n = 0, the highest probability to find the quantum oscillator is at x = 0 while
for its classical counterpart it is at x = ±A. At n = 10, the difference between
the two gets smaller. Indeed, when the quantum oscillations are effectively



4.4. CLASSICAL VERSUS QUANTUM OSCILLATORS 35

30− 20− 10− 0 10 20 30

12−10×

x[m]

200−

100−

0

100

200

310×

0
ψ

x = -A x = A

30− 20− 10− 0 10 20 30

12−10×

x[m]

200−

100−

0

100

200

310×1
ψ

x = -A x = A

30− 20− 10− 0 10 20 30

12−10×

x[m]

200−

100−

0

100

200

310×

2
ψ

x = -A x = A

30− 20− 10− 0 10 20 30

12−10×

x[m]

200−

100−

0

100

200

310×

3
ψ

x = -A x = A

40− 30− 20− 10− 0 10 20 30 40

12−10×

x[m]

200−

100−

0

100

200

310×

10
ψ

x = -A x = A

40− 30− 20− 10− 0 10 20 30 40

12−10×

x[m]

0

10

20

30

40
910×

2 |
10

ψ| x = -A x = A

Quantum

Classical

Figure 4.5: Harmonic oscillator eigenfunctions ψn for n = 0, 1, 2, 3 and 10.
Vertical lines at x = ±A show boundaries between which a classical oscillator
with the same energy would oscillate. Also shown are probability densities for
a quantum harmonic oscillator |ψ10|2 and the corresponding probability density
for a classical oscillator of the same energy.

averaged out, we get close to the classical probability density with the minimum
at x = 0 and maxima at x = ±A. Thus in the limit of large quantum numbers,
n → ∞, we retrieve classical mechanics - behaviour known as correspondence
principle, formulated by Bohr in 1920.

4.4.1 Problem

Find the lowest energy E1 for a neutron in an infinite square well with the width
of the well L = 10−14 m (about the size of a nucleus)!

4.4.2 Problem

Show that eigenfunctions ψn of the harmonic oscillator given by Eq. 4.48 form
an orthonormal set, i.e., ∫ ∞

−∞
ψ∗nψmdx = δnm (4.51)

where

δnm = 0 for n 6= m (4.52)

δnm = 1 for n = m (4.53)
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Do this for all combinations of n,m = 0, 1, 2, 3 using an appropriate software tool
for integration (for example using Wolfram Alpha, www.wolframalpha.com)!

4.4.3 Problem

Prepare the mixed state out of the eigenfunctions ψ2 and ψ3 of the harmonic
oscillator

ψ = c2ψ2 + c3ψ3 (4.54)

so that (performing measurement on this mixed state) we can measure the
energy E2 = ~ω(2 + 1

2 ) of the oscillations with the probability 30 %. In effect,
you have to find the coefficients c1 and c2. Remember and check that the mixed
wavefunction ψ is properly normalized:

∫∞
−∞ ψ∗ψdx = 1.

4.4.4 Problem

Let us assume that the harmonic oscillator is in the state ψm (the eigenstate
with energy Em = ~ω(m + 1

2 )). The probability of transition from ψm to the
state ψn (the eigenstate with energy En) is proportional to the integral

I =

∫ ∞
−∞

x ψ∗mψndx (4.55)

If I > 0, the transition is allowed and will proceed via the photon emission (for
m > n) or absorbtion (for m < n). The photon energy has to be E = |Em−En|.
If I = 0, the transition is forbidden.

Check for all combinations of n,m = 0, 1, 2, 3, 4 which transitions are allowed
and on the basis of your results try to guess the selection rules for harmonic
oscillator for arbitrary n,m (selection rules tell us for which combinations of
m,n the transitions are allowed).

4.4.5 Problem

A natural frequency of vibrations for a hydrogen molecule is f = 1.26×1014 s−1.
Find the energy of the zero-point vibrations E0! Can the vibrational degrees of
freedom with energy E1 = E0 + hf be excited at the temperature T = 600 K?
Hint: the states with energy E1 are excited at the temperature Te for which the
thermal energy 3 kTe/2 = E1 − E0.



Chapter 5

Hydrogen atom

5.1 Angular momentum

Angular momentum plays an important role in the hydrogen atom, in particular
it is linked to quantum numbers l and ml. In view of this we will derive the angu-
lar momentum operator starting from the definition of the angular momentum
in classical mechanics,

~L = ~r × ~p = m~r × ~v (5.1)

where ~r = (x, y, z) is the vector pointing from the origin to the position of the
particle with mass m, ~p = (px, pz, pz) is the momentum of the particle and ~v its
velocity, see Fig. 5.1.

The components of the angular momentum are then given by

Lx = ypz − zpy (5.2)

Ly = zpx − zpz (5.3)

Lz = xpy − ypx (5.4)

It turns out that it is the square of the magnitude of the angular momentum
that appears in the equations describing the hydrogen atom,

L2 = L2
x + L2

y + L2
z. (5.5)

In quantum mechanics, to get the angular momentum operator ~̂L, we replace
~r and ~p with corresponding operators ~̂r = ~r and ~̂p = −i~∇,

~̂L = ~r × ~̂p = −i~ ~r ×∇, (5.6)

37
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L

z

r

p
m

Figure 5.1: Definition of angular momentum. If the particle moves in the xy
plane about the z-axis, the angular momentum ~L has a fixed direction along
the z-axis.

which gives us for the operators of the components

L̂x = −i~(y
∂

∂z
− z ∂

∂y
) (5.7)

L̂y = −i~(z
∂

∂x
− x ∂

∂z
) (5.8)

L̂z = −i~(x
∂

∂y
− y ∂

∂x
). (5.9)

In the spherical coordinate system, Fig. 5.2, these operators are given by

L̂x = i~(sinφ
∂

∂θ
+ cot θ cosφ

∂

∂φ
) (5.10)

L̂y = i~(− cosφ
∂

∂θ
+ cot θ sinφ

∂

∂φ
) (5.11)

L̂z = −i~ ∂

∂φ
(5.12)

and the operator of the square of the magnitude of the angular momentum by

L̂2 = −~2
[ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
. (5.13)
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Figure 5.2: Spherical coordinate system. x = r sin θ cosφ, y = r sin θ sinφ, z =
r cos θ.

It can be shown (Problem) that the commutators of operators L̂x, L̂y, L̂z, are[
L̂x, L̂y

]
= +i~L̂z (5.14)[

L̂y, L̂z

]
= +i~L̂x (5.15)[

L̂z, L̂x

]
= +i~L̂y (5.16)

and [
L̂x, L̂2

]
=
[
L̂y, L̂2

]
=
[
L̂z, L̂2

]
= 0, (5.17)

i.e., the component operators do not commute with each other, however, the
L̂2 operator does commute with the component operators. The commuting
operators can share the same eigenfunctions, i.e., their eigenvalues can label the
same quantum state (e.g., the state of hydrogen atom can be described by the

eigenvalues of both L̂2 and L̂z at the same time), which is not possible for the
noncommuting operators for which Heisenberg uncertainty relation applies.

Next, we are interested in the possible values of the size of the quantum
angular momentum, given by

L̂2Y = L2Y. (5.18)

where L2 (the size of the angular momentum squared) are the eigenvalues and

Y = Y (θ, φ) the eigenfunctions of the operator L̂2. Substituting for the operator
from Eq. 5.13, we obtain

1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂φ2
+
L2

~2
Y = 0. (5.19)
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This partial differential equation in variables θ, φ is a well-known equation for
the spherical functions Y (θ, φ). The first steps of its solution are addressed
in Problem 3.4, the full details can be found in the textbooks on quantum
mechanics, e.g. [5]. Here we simply summarize the main results. The finite and
continuous solution exists only for discrete values of L2, given by

L2 = ~2l(l + 1), l = 0, 1, 2, 3, ... (5.20)

where l, in the context of hydrogen atom, is known as the orbital quantum
number. For the size of the angular momentum this implies

L = ~
√
l(l + 1), l = 0, 1, 2, 3, ... (5.21)

with the lowest possible values L = 0,
√

2~,
√

6~, ... for l = 0, 1, 2, .... For each l
there are 2l+1 corresponding solutions, spherical functions Y (θ, φ) ≡ Ylml(θ, φ),
given by

Ylml(θ, φ) =

√
(l − |ml|)!(2l + 1)

(l + |ml|)!4π
P
|ml|
l (cos θ)eimlφ (5.22)

where ml, in the context of hydrogen atom known as magnetic quantum number,
is an integer number limited by the orbital number l to

ml = 0, ±1, ±2, ...,±l; l = 0, 1, 2, 3, ... (5.23)

i.e., (2l + 1) values. For completeness, P
|ml|
l (cos θ) is defined by

P
|ml|
l (x) = (1− x2)

|ml|
2

d|ml|

dx|ml|
Pl(x), x = cos θ, (5.24)

and Pl(x) are Legendre polynomials,

Pl(x) =
1

2l l!

dl

dxl
[(x2 − 1)l]. (5.25)

The spherical functions are also eigenfunctions of the operator L̂z, with eigen-
values Lz,

L̂zYlml(θ, φ) = LzYlml(θ, φ). (5.26)

We prove this by substituting for L̂z from Eq. 5.10 and for Ylml(θ, φ) from Eq.
5.22,

L̂zYlml(θ, φ) = −i~ ∂

∂φ
Ylml(θ, φ) = −i~ iml Ylml(θ, φ). (5.27)

Comparing the right-hand sides of the last two equations, we conclude that
indeed the spherical functions are the eigenfunctions of both L̂2 and L̂z operators
and the eigenvalues Lz are

Lz = ml~, ml = 0, ±1, ±2, ...,±l. (5.28)
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To summarize, both the size of the angular momentum (L) and the pro-
jection of the angular momentum to the z-axis (Lz) are quantized as given by
equations Eqs. 5.21 and 5.28 (the z-axis can point in any direction since nothing
in our considerations forced us to fix it in any particular way). Any other values
are not allowed in nature. We can know precise values of L and Lz at the same
time but once they are known, the Heisenberg uncertainty relations prevent us
to determine precisely the values of Lx and Ly, which is the consequence of Eqs.
5.14 - 5.16.

We illustrate the quantization of the angular momentum in Fig. 5.3. For
l = 2, the size of the angular momentum L = ~

√
l(l + 1) = ~

√
6 defines the

radius of the sphere and hence the angular momentum vector ~L = (Lx, Ly, Lz)
is represented by the points lying on the surface of the sphere. The projection
of the angular momentum to the z-axis, Lz, is restricted to Lz = 0,±~,±2~ for
ml = 0,±1,±2, which further limits ~L to the points lying on the five parallels
shown in the figure. As argued above, Lx and Ly remain uncertain with the
uncertainty given by the diameters of the five (parallel) circles. The angular
momentum vector is thus not fixed in space - it keeps changing its direction
precessing about the z-axis.

5.2 Schrödinger equation for hydrogen atom

To solve hydrogen atom we have to consider the Schrödinger equation,

i~
∂

∂t
ψ(r, t) = Ĥψ(r, t) (5.29)

with the Hamiltonian

Ĥ = Ŵk + Û(r) = − ~2

2m
∇2 + U(r)

= − ~2

2m

( ∂2
∂x2

+
∂2

∂y2
+

∂2

∂z2

)
− e2

4πε0r
(5.30)

and U(r) = − e2

4πε0r
the potential energy between two electric charges (−e elec-

tron, e proton) separated by the distance r.
We seek the stationary solutions in the form

ψ(r, t) = ψ(r) e−i
E
~ t (5.31)

where ψ(r) is the solution of the time-independent Schrödinger equation 3.35,

Ĥ ψ(r) = E ψ(r). (5.32)

This equation is easier to solve in the spherical coordinate system, Fig. 5.2. In
the spherical coordinates,

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

=
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
. (5.33)
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Figure 5.3: Angular momentum quantization. The case of l = 2, L =√
l(l + 1) =

√
6~, Lz = 0,±~,±2~ .

Recalling Eq. 5.13, we get for the Hamiltonian

Ĥ = − ~2

2m
∇2 + U(r) = − ~2

2m

1

r2
∂

∂r

(
r2
∂

∂r

)
+

L̂2

2mr2
+ U(r). (5.34)

The first (r-dependent) term on the right-hand side represents radial kinetic

energy; the second one, L̂2

2mr2 , which is θ and φ dependent, represents orbital
kinetic energy. The operator of the square of the magnitude of the angular
momentum is thus part of the hydrogen hamiltonian.

Substituting Eq. 5.34 into Eq. 5.32,

− ~2

2m

1

r2
∂

∂r

(
r2
∂

∂r
ψ(r)

)
+

L̂2

2mr2
ψ(r) + U(r)ψ(r) = Eψ(r). (5.35)

This partial differential equation of three variables is solved by the separation
of variables, putting

ψ(r) = R(r) F (θ, φ). (5.36)
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Substituting Eq. 5.36 into Eq. 5.35 we obtain after some manipulation

−~2
∂
∂r

(
r2 ∂
∂rR(r)

)
R(r)

+ 2mr2
(
U(r)− E

)
= − L̂

2F (θ, φ)

F (θ, φ)
(5.37)

Since the left-hand side depends on r and the right-hand side on θ and φ, both
sides can be equal for all values of r, θ, φ only if they are both equal to the same
constant k so that

−~2
∂
∂r

(
r2 ∂
∂rR(r)

)
R(r)

+ 2mr2
(
U(r)− E

)
= k (5.38)

L̂2F (θ, φ) = −kF (θ, φ) (5.39)

We see that the function F (θ, φ) ≡ Ylml(θ, φ) is the eigenfunction of the L̂2

operator with the eigenvalue −k ≡ L2 = ~2l(l + 1). Eq. 5.38 can be rewritten
as

1

r2
∂

∂r

(
r2
∂

∂r
R(r)

)
+

2m

~2
(
E − U

)
R(r) +

kR(r)

~2r2
= 0. (5.40)

For the solution of Eq. 5.40, we refer the reader to the existing literature
[3, 5]. The result, shown explicitly in Tab. 5.2 as R(r) ≡ Rnl for the lowest
quantum states, can be expressed in terms of associated Laguerre functions. For
E < 0 (electron bound in the hydrogen atom), the energy is quantized as

En = − me4

32π2ε20~2
1

n2
where n = 1, 2, 3, ...., (5.41)

in agreement with the Bohr’s model. The positive integer n is the principal
quantum number for which the following inequality holds

n ≥ l + 1. (5.42)

This restricts the orbital quantum number to values

l = 0, 1, 2, ..., n− 1. (5.43)

The eigenfunctions of the Hamiltonian for the hydrogen atom are thus la-
belled by the three quantum numbers,

ψ ≡ ψnlml = Rnl Ylml(θ, φ) = Rnl Θlml Φml . (5.44)

We show the eigenfunctions in Tab. 5.2 for n = 1, 2 and 3.
Although the energy quantization is the same as in the much simpler Bohr’s

model, the quantum mechanical treatment yielded nontrivial results in the form
of existence of several states which all belong to the same energy level En. These,
so-called degenerate states, are described by eigenfunctions ψnlml which differ
in quantum numbers l and ml but share the same n. As seen in the table, n = 1
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n l ml Φml(φ) Θlml(θ) Rnl(r)

1 0 0 1√
2π

1√
2

2

a
3/2
0

e−
r
a0

2 0 0 1√
2π

1√
2

1

2
√
2a

3/2
0

(2− r
a0

)e−
r

2a0

2 1 0 1√
2π

√
6
2 cos θ 1

2
√
6a

3/2
0

r
a0
e−

r
2a0

2 1 ±1 1√
2π
e±iφ

√
3
2 sin θ 1

2
√
6a

3/2
0

r
a0
e−

r
2a0

3 0 0 1√
2π

1√
2

2

81
√
3a

3/2
0

(27− 18 r
a0

+ 2 r
2

a20
)e−

r
3a0

3 1 0 1√
2π

√
6
2 cos θ 4

81
√
6a

3/2
0

(6− r
a0

) ra0 e
− r

3a0

3 1 ±1 1√
2π
e±iφ

√
3
2 sin θ 4

81
√
6a

3/2
0

(6− r
a0

) ra0 e
− r

3a0

3 2 0 1√
2π

√
10
4 (3 cos2 θ − 1) 4

81
√
30a

3/2
0

r2

a20
e−

r
3a0

3 2 ±1 1√
2π
e±iφ

√
15
2 sin θ cos θ 4

81
√
30a

3/2
0

r2

a20
e−

r
3a0

3 2 ±2 1√
2π
e±2iφ

√
15
4 sin2 θ 4

81
√
30a

3/2
0

r2

a20
e−

r
3a0

Table 5.1: Eigenfunctions ψ = Rnl Θlml Φml for the hydrogen atom for n = 1, 2
and 3.

state is nondegenerate, n = 2 has four degenerate states and n = 3 nine. We
know degenerate states exist since in certain cases, e.g. if hydrogen is in the
external magnetic field, the degeneracy is lifted and the originally degenerate
states have different energies.

Probability density is given by

ρ = ψ∗ψ = R∗nl Rnl Θ∗lml Θlml Φ∗ml Φml . (5.45)

The probability densities for n = 2, 3, 4 states are plotted in Fig. 5.4.

Probability for an electron in the eigenstate ψ to be found in the volume dV
is given by

dP = ψ∗ψ dV. (5.46)

The volume element in the sperical coordinate system is given by

dV = r2 sin θ dr dθ dφ. (5.47)

If we integrate Eq. 5.46 over angles θ and φ, we get the probability dPr to find
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Figure 5.4: Hydrogen probability densities for n = 2, 3, 4 states. Source: [6].

the electron within the spherical shell given by radii r and r + dr,

dPr =

∫ π

0

∫ 2π

0

ψ∗ψ r2 sin θ dr dθ dφ (5.48)

=

∫ π

0

∫ 2π

0

R∗nlΘ
∗
lml

Φ∗mlRnlΘlmlΦmlr
2 sin θdrdθdφ

= r2 R∗nlRnldr

∫ π

0

Θ∗lmlΘlml sin θdθ

∫ 2π

0

Φ∗mlΦmldφ

= r2 R∗nlRnldr,

since (see Problem 3.5) ∫ π

0

Θ∗lmlΘlml sin θdθ = 1, (5.49)∫ 2π

0

Φ∗mlΦmldφ = 1. (5.50)

The corresponding radial probability density is

ρnl(r) =
dPr
dr

= r2 R∗nlRnl. (5.51)
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5.3 Problems

Problem 3.1
Prove that [L̂x, L̂y] = +i~L̂z !

Problem 3.2
Prove that [L̂x, L̂

2] = 0 !

Problem 3.3
From Eqs. 5.22, 5.24 and 5.25 find the explicit form of the spherical func-

tions Ylml(θ, φ) for l = 0, 1, 2 and corresponding allowed values of ml ! Check
your result comparing it with Ylml(θ, φ) = Θlml Φml where Θlml and Φml are
given in Tab. 5.2.

Problem 3.4 Try to solve Eq. 5.19 by the method of the separation of variables.
Assuming

Y (θ, φ) = Θ(θ)Φ(φ), (5.52)

show that we obtain two separated equations

d2Φ

dφ2
= −k′Φ, (5.53)

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+
[L2

~2
− k′

sin2 θ

]
Θ = 0. (5.54)

where k′ is a constant. Now prove that the solution of Eq. 5.53 is

Φ(φ) = Nei
√
k′φ (5.55)

where N is normalization constant. Finally, show that the condition Φ(φ) =
Φ(φ+ 2π) requires that

√
k′ = ml, (5.56)

where ml = 0,±1,±2, ... is the magnetic quantum number. Note: we will not
attempt to solve Eq. 5.54, the reader is referred to the quantum mechanics
textbooks, e.g. Ref. [5].

Problem 3.5
Show that Eqs. 5.49, 5.50 hold for l = 0, 1, 2 and corresponding allowed

values of ml!

Problem 3.6
Plot radial probability density ρnl(r) = r2 R∗nlRnl for n = 1, 2, 3 and corre-

sponding allowed values of the orbital quantum number l!

Problem 3.7
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In Problem 3.6 you have plotted the radial probability density ρnl(r). This
gives us the probable distance of the electron from the proton, however, since
we had integrated over θ and φ, we lost information about the probability to
find electron in different directions, given by Θ∗lmlΘlmlΦ

∗
ml

Φml . Your task is to
fix this by showing that Φ∗mlΦml = constant, and then plotting polar diagrams
of Θ∗lmlΘlml for all combinations of l and ml for l = 0, 1, 2, 3 and l = 4. To plot
polar diagrams, choose the z − y plane (x = 0, y - the horizontal axis, z - the
vertical one). Plot a line with the length of Θ∗lmlΘlml for a single chosen value
of θ; the line starts at the origin and its end point has coordinates

z = Θ∗lmlΘlml cos(θ), (5.57)

y = Θ∗lmlΘlml sin(θ) (5.58)

Plot now just the end points for many values of θ from −π2 to π
2 to get a full

polar graph.
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Chapter 6

Spin

6.1 Magnetic dipole moment

Let us assume that the classical particle we used to define the angular momen-
tum ~L in Fig. 5.1 is charged with negative charge of −e (the electron) and it

is moving along a circle with radius r in the xy plane, see Fig. 6.1. Then ~L
is pointing along the positive z-axis as before and the current I in the loop,
defined by the flow of the positive charge, is flowing in the opposite direction to
the electron. The magnetic dipole moment is defined by

~µ = I ~S, (6.1)

where ~S is the vector of the area inside the loop, ~S = π r2~n. Its direction
is given by the unit vector ~n, perpendicular to the area and pointing up or
down according to the right hand rule: four fingers wrapped around the thumb
indicate the flow of the current and the thumb in this case points down along
the negative z-axis. The period of rotation is given by T = 2πr/v, implying the
size of the current

I =
|Q|
T

=
ev

2πr
. (6.2)

For the magnetic dipole moment we thus get

~µ =
ev

2πr
πr2 ~n =

e m r v

2m
~n =

eL

2m
~n

= − e

2m
~L. (6.3)

This is the magnetic dipole moment of electron associated with its motion
around the center (= proton in the case of hydrogen atom). Eq. 6.3 is re-
sponsible for gyromagnetic phenomena (such as Einstein-de Haas experiment)
which connect magnetic properties of objects to their mechanical rotation. The
multiplicative factor − e

2m is the so-called gyromagnetic ratio.
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L

z

r

m
I

−e

p

µ

n

Figure 6.1: The magnetic dipole moment ~µ of a current loop.

If we insert a magnet with a dipole moment ~µ in a magnetic field ~B, the
magnetic energy of the dipole is

Wm = −~µ · ~B. (6.4)

The size of magnetic energy depends on the angle between ~µ and ~B. Substituting
for ~µ from Eq. 6.3, we get

Wm =
e

2m
~L · ~B. (6.5)

Choosing the z axis parallel to ~B, this becomes

Wm =
e

2m
Lz B. (6.6)

So far our treatment has been entirely classical. Switching to quantum mechan-
ics, the eigenvalues of the magnetic energy operator obey the same formula,
however, the z component of the angular momentum is quantized, see Eq. 5.28
and Fig. 5.3:

Lz = ml ~, ml = 0,±1,±2,±3, ...,±l, (6.7)

yielding

Wm =
e~
2m

ml B ml = 0,±1,±2,±3, ...,±l. (6.8)
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n = 1, l = 0

n = 2, l = 1

n = 2, l = 0
m = −1

m = 0

m = +1

Figure 6.2: Left: the Lyman alpha line for ~B = 0. Right: In the presence of
nonzero magnetic field the Lyman alpha line splits into three lines as a conse-
quence of the splitting of the n = 2, l = 1 state into three energy levels as given
by Eq. 6.9

The factor e~/2m = 9.27× 10−24 JT is the unit of ~µ in atomic physics.
Let us now consider a hydrogen atom in a magnetic field. The interaction

of the electron magnetic moment with the field leads to the modification of the
energy of the state with quantum numbers n and ml from En = E1/n

2 to

En =
E1

n2
+Wm =

E1

n2
+

e~
2m

ml B. (6.9)

The result is that the energy levels with l > 0 will split into 2l + 1 levels
and the original single line splits into a triplet1, see Fig. 6.2 for the case of a
Lyman alpha line. The size of the splitting is controlled by the magnetic field
B and ml, which explains why ml is called the magnetic quantum number. The
observation of hydrogen lines in external magnetic fields confirmed the splitting
of the original lines into triplets, the effect which became known as the normal
Zeeman effect.

6.2 The spin hypothesis

There are two subtle difficulties which complicate the agreement of experimental
results with our prediction for the Zeeman effect in the previous section. First,
it turned out that the Lyman alpha line in a zero external field ( ~B = 0) is
actually a doublet as depicted in Fig. 6.3, not a singlet shown in Fig. 6.2 left.

1For l > 1 one might expect the splitting into more lines than three, however, it turns out
that the selection rules limit the number of lines to three for any l.
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n = 1, l = 0

n = 2, l = 1

n = 2, l = 0
n = 2, l = 1, j = 3/2

n = 2, l = 0, j = 1/2
n = 2, l = 1, j = 1/2

n = 1, l = 0, j = 1/2

Lamb shift

Figure 6.3: Left: The Lyman alpha line without an electron spin correction,
no relativistic correction, external field ~B = 0. Right: The Lyman alpha line
with the electron spin correction and the relativistic correction, external field
~B = 0. The state n = 2, l = 1 splits into two levels, n = 2, l = 1, j = 3/2 and
n = 2, l = 1, j = 1/2. The Lyman alpha line splits into a doublet (two lines) as
a result. The splittings are much smaller than shown.

This effect is known as the fine structure of the hydrogen spectrum. Second,
in many atoms other than hydrogen the external magnetic field ~B > 0 splits
the original lines not into three but into four, six, or even more lines - the
so-called ”anomalous Zeeman effect”. Both difficulties are a manifestation of
an intrinsic angular momentum of electron - the spin. Spin was introduced in
1925 by Uhlenbeck and Goudsmit. Their idea was that an electron is a small
rotating sphere with a spin angular momentum S = L = Iω = 2

5mr
2ω where

I is the moment of inertia, ω the angular velocity, m the mass of electron, and
r its radius. They fixed the value of the electron spin at S = 1/2 in order to
explain both the fine structure and the anomalous Zeeman effect. The total
angular momentum ~J is the sum of the orbital angular momentum ~L and the
spin angular momentum ~S. The magnitude of the total angular momentum is
(compare with Eq. 5.21)

J = ~
√
j(j + 1) (6.10)

where for l > 0 we have two possible values

j = l +
1

2
, l − 1

2
(6.11)

and for l = 0 a single value

j =
1

2
, (6.12)
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which explains the labelling of states in Fig. 6.3 (right). The split between
the states l = 1, j = 3/2 and l = 1, j = 1/2 is due to the so-called spin-orbit
interaction with energy

Wso = −~µs · ~B, (6.13)

where ~µs is the electron’s spin magnetic moment and ~B is not the external
field but a magnetic field generated by the proton which orbits the electron in
the electron’s rest frame. The energy Wso is very small, leading to the split
of 4.5 × 10−5 eV between the two l = 1 states. Compare this to the energy
of 10.2 eV separating these two states from the n = 1, l = 0 ground state.
Finally, there is a minute split between the n = 2, l = 0, j = 1/2 state and the
n = 2, l = 1, j = 1/2 state, known as the Lamb shift. The Lamb shift is a
correction due to the quantum field theory.

The original picture of an electron as a small rotating sphere is not valid.
For S = 1/2 (Sz = ~/2) and the radius of electron r < 10−19m, we get an
impossible value for the velocity of the surface rotation v = ωr > c ! However,
the electron’s spin value of 1/2 stands, confirmed by both observations and a
theoretical prediction by Dirac.

6.3 Stern-Gerlach experiment

6.4 Multi-electron atoms

6.4.1 Problem

If atoms could contain electrons with pricipal quantum numbers up to and
including n = 6, how many elements would there be?

6.4.2 Bonus problem

The ionization energies of the elements of atomic numbers 20 through 29 are
very nearly equal. Why should this be so when considerable variations exist in
the ionization energies of other consecutive sequences of elements?

6.4.3 Problem 3.1

The subshell is defined by a fixed quantum number l. If all states from ml = −l
to ml = +l are occupied by electrons, the subshell is closed. Unsöld’s theorem
states that the sum of probability densities over all these states is a constant
independent of angles θ and φ, so that

+l∑
ml=−l

|Θ|2|Φ|2 = constant, (6.14)
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which implies that the effective distribution of electric charge in a closed sub-
shell is spherically symmetric and the atoms with all subshells closed have no
electric dipole moments (on top of being electrically neutral). As a consequence,
they do not attract other electrons, nor it is easy to detach their own electrons.
Such atoms are chemically passive and this is the case of the inert gasses.

Verify Unsöld’s theorem for l = 0, 1 and 2.



Chapter 7

Mixture of eigenstates

Let ψn be a set of eigenfunctions of the Hamiltonian operator Ĥ with eigenvalues
En,

Ĥψn = Enψn. (7.1)

It can be shown that this set of eigenfunctions is complete, which means that
we can expand arbitrary wavefunction in terms of it,

ψ(−→r ) =

∞∑
n=0

cnψn(−→r ). (7.2)

It is important to note that the wavefunction ψ(−→r ), a linear combination of
eigenstates, represents a possible state of the system. Being a mixture of energy
eigenstates, one may wonder what the energy corresponding to this state is.
It turns out that, unlike eigenstates, ψ(−→r ) in general has no sharp value of
energy and the measurement on this state would yield different values En with
probabilities that we will now determine.

The wavefuncion should be normalized to one,∫
ψ∗(−→r )ψ(−→r )d3−→r = 1, (7.3)

and the complex conjugate function is

ψ∗(−→r ) =

∞∑
m=0

c∗mψ
∗
m(−→r ). (7.4)

Plugging the expansions of Eqs. 7.2, 7.4 into Eq. 7.3 and using the fact that
the eigenfunctions form an orthonormal set,∫

ψ∗mψnd
3−→r = δmn, (7.5)
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we get the first property of cn,∫ ∞∑
m=0

∞∑
n=0

c∗mcnψ
∗
mψnd

3−→r =

∞∑
m=0

∞∑
n=0

c∗mcn

∫
ψ∗mψnd

3−→r

=

∞∑
m=0

∞∑
n=0

c∗mcnδmn

=

∞∑
n=0

c∗ncn = 1. (7.6)

Before we discuss this result, we express the mean value of energy in the
state ψ(−→r ) ≡ ψ,

Ē =

∫
ψ∗Ĥψd3−→r =

∫ ∞∑
m=0

c∗mψ
∗
mĤ

∞∑
n=0

cnψnd
3−→r

=

∞∑
m=0

∞∑
n=0

c∗mcnEn

∫
ψ∗mψnd

3−→r

=

∞∑
n=0

c∗ncnEn. (7.7)

Upon inspection of Eqs. 7.6, 7.7, we conclude that c∗ncn can be interpreted as
the probability Pn that the measurement on the state ψ(−→r ) yields the energy
En,

Pn = c∗ncn. (7.8)

7.1 Entangles states and Bell’s inequality

Mixed states and their interpretation bring us to the heart of quantum me-
chanics which deals with the role of measurement/observer and reality of the
Universe. According to the standard Copenhagen interpretation of quantum
mechanics due to Niels Bohr, quantum systems in general exist as superpo-
sitions of eigenstates (see Eq. 7.2) and it is the measurement process which
causes the collapse of the wavefunction to a particular eigenstate with a sharp
eigenvalue measured by the observer with the probability Pn. In this sense,
the Universe is not real - the quantities describing quantum systems take on
definite, ”real” values only during the measurement.

This view was opposed by Einstein who argued for the real Universe in which
the system was in the measured eigenstate already before the measurement due
to the presence of hidden variables. These variables simply instruct the observed
quantities about the value they should turn in. System is thus the same before
and after the observation, i.e., independent of the measurement.

Let us take a closer look at the essence of the argument between the two
physicists. We will consider a very simple quantum system, a single electron



7.1. ENTANGLES STATES AND BELL’S INEQUALITY 57

with spin 1/2, which can be in just two eigenstates, spin up (ψ1 = | ↑〉) or
spin down (ψ2 = | ↓〉). A general mixed state, according to the Copenhagen
interpretation, would then be given by

ψ = c1ψ1 + c2ψ2 = c1 ↑〉+ c2| ↓〉. (7.9)

This is the state before the measurement of the spin. The measurement will
yield spin up with the probability P1 = c∗1c1 and spin down with the probability
P2 = c∗2c2. During this experiment the wavefunction ψ collapses to either ψ1 or
ψ2.

According to Einstein, the electron was in ψ1 = | ↑〉 (or ψ2) state all the
time, before and after the experiment.

Now, both Einstein and Bohr agree about the results of the measurement
so the debate about what form the wavefunction had before the experiment
may seem interesting but irrelevant for physics. Indeed, for about 30 years the
reality debate was perceived as pure philosophy with no physical consequences.
In the meantime, Schroedinger sided with Einstein saying ”I don’t like quantum
mechanics, and I’m sorry I ever had anything to do with it” and offering a
thought experiment involving unfortunate cat in a mixed state of both alive
and dead eigenstates to illustrate absurdities of the Copenhagen interpretation
applied to macroscopic objects. Einstein also made a succinct point asking
Abraham Pais ”Do you really believe that the Moon exists only when you look
at it? [7].

Bohr and Einstein had many intense discussions of the subject over the years
during which Bohr refuted many objections of his opponent. Finally, in 1935,
Einstein wrote a paper with Podolsky and Rosen, known as EPR, in which they
formulated the most clever objection thus far. The crucial idea was to consider
the mixture of spin eigenstates of two electrons rather than one,

ψ = c1| ↑〉| ↑〉+ c2| ↓〉| ↓〉+ c3| ↑〉| ↓〉+ c4| ↓〉| ↑〉. (7.10)

In a special state, the so-called Bell state, c3 = c4 = 0, c1 = c2 = 1/
√

2 and

ψ =
1√
2
| ↑〉| ↑〉+

1√
2
| ↓〉| ↓〉. (7.11)

Although nowadays the Bell state can be prepared experimentally, for the EPR
trio it was a pure thought experiment: the two electrons are emitted from the
source in the Bell state in opposite directions, Fig. 7.1.

Electron eA flies to the left where Alice measures its spin with her detector,
electron eB flies to the right to the Bob’s detector. If Alice measures first, she
will find the electron in the spin up state with the probability P1 = c∗1c1 = 0.5
and the spin down state with the probability P2 = c∗2c2 = 0.5. As a result of
her measurement, the Bell state collapses either to (if Alice measured spin up)

ψ =
1√
2

(| ↑〉| ↑〉+ | ↓〉| ↓〉) → | ↑〉| ↑〉. (7.12)
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Figure 7.1: EPR thought experiment.

or (if Alice measured spin down)

ψ =
1√
2

(| ↑〉| ↑〉+ | ↓〉| ↓〉) → | ↓〉| ↓〉. (7.13)

As a consequence, if Alice measured spin up, Bob, performing measurement
after Alice on the collapsed state, will find spin up with probability 1 and spin
down with probability 0. If Alice measured spin down, Bob will measure spin
down with probability 1 and spin up with probability 0.

Now, if Bob measured first, he would find spin up with probability P1 =
c∗1c1 = 0.5 and spin down with probability P2 = c∗2c2 = 0.5. Clearly, Bob’s
results (the same holds for Alice) depend on who measures first. The Alice’s
measurement changes the probabilities of the Bob’s measurement from 0.5 to 1
or 0. If such a change occurs, we say that the original state is entangled. If there
is no change in the probabilities, the state is not entangled (not every mixed
state is entangled). The Bell state was chosen to be maximally entangled.

EPR continued their argument assuming that Alice and Bob are far away
from each other and Alice measures first with the result of spin up. If Bob
performs his experiment shortly after Alice but before any signal from Alice
could arrive, he will find spin up with probability 1. The question is, how the
Bob’s electron knew that it should turn its spin up before the signal from Alice
arrived? EPR concluded that either the universe is not local (the signal in this
case travels faster than light) or the two electrons are indeed in the Bell state
before Alice performs her measurement and the Bell state collapses immediately
during her observation. The universe is then not real in the sense that there
is no definite value for the spin of the electron before Alice’s observation. For
Einstein, the non-local and/or unreal universe were equally bad options. As
a way out of the dilemma, he proposed his hidden variables theory mentioned
before: if Alice measures spin up, all it means is that the electron, instructed
by the hidden variable, was emitted with the spin up right from the source and
was in the same state before, during and after the Alice’s observation.

The EPR objection seemed solid and the debate ended with a draw. In
1964 John Bell wrote a seminal paper in which he showed that the subject does
belong to physics. He derived Bell’s inequality which describes the results of an
experiment which could, at least theoretically, differentiate between quantum



7.1. ENTANGLES STATES AND BELL’S INEQUALITY 59

Figure 7.2: Two photons emitted in the Bell state.

mechanics and hidden variable theory. The experiment, based on the Bell state
of two electrons described above, seemed impossible to perform at the time.

In 1972 John Clauser modified the Bell’s proposal, suggesting the use of
two photons instead of electrons which proved to be a game changer. The two
photons are emitted from the source in the Bell state in opposite directions,
Fig. 7.2. The role of spin is played by the photon’s polarization. The photon
with vertical polarization, denoted as |+〉, will pass the linear polarizer oriented
vertically (and not pass the linear polarizer oriented horizontally). On the other
hand, the photon with horizontal polarization, denoted as |−〉, will not pass
the linear polarizer oriented vertically (and pass the linear polarizer oriented
horizontally). The Bell state of the two pohotons is given by

ψ =
1√
2

(|+〉|+〉+ |−〉|−〉) (7.14)

As before with electrons, if Alice measures first, she will find her photon in the
|+〉 state with the probability P1 = 0.5 and in the |−〉 state with the probability
P2 = 0.5. As a result of her measurement, the Bell state collapses either to |+〉
(if Alice measured vertical polarization) or to |−〉 (if Alice measured horizontal
polarization). As a consequence, if Alice measured vertical (horizontal) polar-
ization, Bob, performing measurement after Alice on the collapsed state, will
find vertical (horizontal) polarization with probability 1 and horizontal (verti-
cal) polarization with probability 0.

The crucial point of the experiment is the rotation of the linear polarizers.
So far both linear polarizers were oriented vertically. Let us rotate the Bob’s
polarizer by angle α, see Fig. 7.3. If Alice measures first and finds her pho-
ton in the vertical polarization state, the collapse of the Bell state sends the
Bob’s photon to the vertical polarization state as well. The Bob’s photon is
now approaching the polarizer rotated by α. The probability that it passes (not
passes) the polarizer is given by P = cos2 α (sin2 α), the dependence we know
from optics for the decrease in intensity of the light after it passes the linear
polarizer. Table 7.1 summarizes probabilities for photons to pass (P+) or not
to pass (P−) the Alice’s (PA) and Bob’s (PB) polarizers, and the combined
probabilities P++, P−−, P+−, P−+ where the first sign corresponds to the Al-
ice’s polarizer and the second one to the Bob’s polarizer so that, e.g., P+− is



60 CHAPTER 7. MIXTURE OF EIGENSTATES

Figure 7.3: Bob’s polarizer is rotated by angle α from vertical direction.

the probability that Alice’s photon will pass her polarizer and the Bob’s pho-
ton will not pass his polarizer. We define the following important combination

PA P+
B P−B P++, P−− P+−, P−+

P+
A = 1

2 cos2 α sin2 α P++ = 1
2 cos2 α P+− = 1

2 sin2 α

P−A = 1
2 sin2 α cos2 α P−− = 1

2 cos2 α P−+ = 1
2 sin2 α

Table 7.1: Probabilities for photons to pass (+) or not (-) polarizers shown in
Fig. 7.3. Alice measures first.

of probabilities, the so-called correlation, for the directions −→a and
−→
b of the

polarizers,

E(a, b) = P++ + P−− − P+− − P−+ = cos 2α. (7.15)

The final step is to rotate both polarizers and perform measurements at two
directions of each polarizer (Fig. 7.4), which effectively leads to four correlations,
E(a1, b1), E(a1, b2), E(a2, b1) and E(a2, b2). John Bell showed that the quantum

Figure 7.4: Each polarizer has two orientations: a1, a2 for Alice, b1, b2 for Bob.
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mechanical prediction of the quantity

S = E(a1, b1)− E(a1, b2) + E(a2, b1) + E(a2, b2) (7.16)

is (for a1 = 0◦, a2 = 45◦, b1 = 22, 5◦, b2 = 67, 5◦)

S = 2
√

2, (7.17)

which is different from the prediction of the hidden variable theories given by
the Bell’s inequality

|S| ≤ 2. (7.18)

John Clauser was the first one to perform the experiment with entangled pho-
tons and show that quantum mechanics was correct. His results, however, were
not conclusive since important loopholes remained. In 1982-83 Alain Aspect
improved the experiment in several steps which included the photon source up-
grade (calcium atoms were excited by crypton laser to ramp up statistics), the
replacement of single-channel polarizers with two-channel ones (this made the
direct detection of both polarization states possible), and the use of polarizers
with variable orientation which was determined after the photons were emitted
but before they reached the polarizers. The setup of the Aspect’s two-channel
experiment is shown in Fig. 7.5. The orientation of polarizers is denoted with

Figure 7.5: Aspect’s two-channel experiment. Source: Wikipedia, 2023.

letters a, b, detectors D+ and D− detect vertical (+) and horizontal (-) po-
larization, and coincidence monitor CM counts coincidences of the four types
(++, –, +-, -+). The coincidences are used to determine the correlation E(a, b)
experimentally as

E(a, b) =
N++ +N−− −N+− −N−+

N++ +N−− +N+− +N−+
. (7.19)

https://en.wikipedia.org/wiki/Bell_test


62 CHAPTER 7. MIXTURE OF EIGENSTATES

Aspect’s experiments confirmed beyond reasonable doubt the quantum mechan-
ical prediction and excluded hidden variable theory. Clauser, Aspect and An-
ton Zeilinger (who, using entangled photons, demonstrated the phenomenon of
quantum teleportation) were awarded the Nobel Prize in Physics in 2022. Their
research with entangled photons pioneered quantum information science. It is
fascinating to see how the fundamental physics subject first received the label
of pure philosophy, then found its way back to physics and finally became the
basis of new quantum technologies such as quantum communication, quantum
sensors and quantum computing.



Chapter 8

What is a particle?

8.1 Spin of the photon

We would like to show that a circularly polarized electromagnetic wave can
represent a photon. We will start with a simple form of electromagnetic field, a
linearly polarized (LP) plane wave

~A(x, y, z, t) =
E0

ω
eiωt−iωz/c ~i, (8.1)

where ~A(x, y, z, t) is the complex vector potential, E0 is the amplitude of the
electric field, ω the angular frequency, t time, c the speed of light in the vacuum.
The wave propagates in free space along the z axis and the tip of the vector ~A
moves over the line parallel to the x axis defined by the unit vector ~i.

We can form a circularly polarized wave from the superposition of the two
orthogonal LP plane waves,

~A(x, y, z, t) = i
E0

ω
eiωt−iωz/c (~i± i ~j), (8.2)

where ~j is the unit vector along the y axis and the ± sign indicates the right
and left circular wave, respectively. The factors i =

√
−1 ensure the phase

difference of π/2 between the two LP waves needed for the formation of the
circularly polarized waves. We will see that this is indeed a circular wave in a
moment.

The complex electric field ~E(x, y, z, t) is given by

~E(x, y, z, t) = −∂
~A(x, y, z, t)

∂t
= E0e

iωt−iωz/c (~i± i ~j), (8.3)

and the physical electric field ~E(x, y, z, t) by the real part of the complex field

~E(x, y, z, t) = Re
(
E0e

iωt−iωz/c (~i± i ~j)
)

(8.4)

= E0 cos(ωt− ωz/c)~i∓ E0 sin(ωt− ωz/c)~j. (8.5)
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The tip of the electric field vector moves on a circle clockwise (right circular
wave) for the minus sign in Eq. 8.5, see Fig. 8.1. Note that this minus sign

corresponds to the plus sign in Eqs. 8.3 and 8.4. Likewise, the tip of ~E(x, y, z, t)
moves on a circle counterclockwise (left circular wave) for the plus sign in Eq.
8.5.

x

y

zx

y

z

a) b)

E(x,y,z,t)

E(x,y,z,t)

Figure 8.1: Schematic of a) right circularly polarized wave and b) left circular
wave. The z axis points out of the screen towards the viewer.

The complex magnetic field is given by

~B(x, y, z, t) = ~∇× ~A(x, y, z, t) =
E0

c
eiωt−iωz/c (∓i~i+~j). (8.6)

According to the classical theory of electromagnetism, the energy flow in the
electromagnetic field in vacuum is given by the Poynting vector

~S =
1

µ0

~E × ~B (8.7)

and the momentum density by

~P =
1

µ0c2
~E × ~B. (8.8)

The circularly polarized wave of Eq. 8.2 is infinite in extent: its amplitude
E0 = E0(x, y, z) = const for any point including x, y, z → ±∞. The corre-

sponding electric field ~E(x, y, z, t) of Eq. 8.3 and the magnetic field ~B(x, y, z, t)
of Eq. 8.6, having only x and y components, are everywhere perpendicular to
the z axis (to the wavevector). This is a well known feature of infinite waves
of our type. As a consequence, the energy flow and the momentum density are
everywhere parallel to the z axis, see Fig. 8.2.
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E (r > R) = E (r < R)
0 0

E (r < R)
0

z

P

P

P

R

r

r

Figure 8.2: The flow of momentum density ~P for the circularly polarized infinite
wave. It points along the z axis as indicated by arrows and is of a constant size
at any point in space. The wave extends to infinity both in the transverse plane
(amplitude E0(r < R) = E0(r > R) for any r) and along the z axis. The
cylinder is illustrated for a later purpose when we will bound the wave to its
volume (r < R).

Indeed, using Eqs. 8.3 and 8.6, we get for the time-average momentum
density (Problem 1)

~̄P =
1

2
Re
{ ~E × ~B∗

µ0c2

}
=

E2
0

µ0c3
~k, (8.9)

where ~k is the unit vector along the z axis. With energy and momentum flowing
only along the z axis, the net angular momentum ~J , to be defined below, must be
zero. The nonzero ~J requires that at least a small part of energy and momentum
circulates in the transverse xy plane about the z axis .

This circulation can be achieved if we limit the wave to a finite transverse
extent. The vector potential will still be given by Eq. 8.2, but only inside the
cylinder of radius R, Fig. 8.3. Outside the cylinder the potential drops to zero,
as its amplitude E0 = E0(x, y) = E0(r), constant for r < R, quickly falls to
zero in the vicinity of r = R, as indicated by the red line in the figure. The
wave has cylindrical symmetry about the z axis. The magnetic field of this
finite cylindrical wave, unlike that of the original infinite wave, picks a nonzero
z component,

~B(x, y, z, t) = ~∇× ~A(x, y, z, t)

=
{E0

c
(∓i~i+~j) + [∓∂xE0(x, y)− i∂yE0(x, y)]

1

ω
~k
}

×eiωt−iωz/c. (8.10)
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P
T

P
T

z

R

y

x

Figure 8.3: Right circularly polarized wave of a finite transverse extent propa-
gating along the z axis. The red curve shows the amplitude E0 = E0(x, y) as

a function of distance r =
√
x2 + y2 from the z axis. The three circles indi-

cate the region where the energy flow (the momentum density) has the circular

component ~PT . The dominant component of the flow, along the z axis, is not
shown.

The presence of the nonzero Bz is crucial for the generation of the circulating
component of the energy and momentum flow. If we calculate the time-average
momentum density for the finite cylindrical wave (Problem 2), we get

~P =
1

2
Re
{ ~E × ~B∗

µ0c2

}
=

1

2µ0c2

{
∓ E0

ω
∂yE0(x, y)~i± E0

ω
∂xE0(x, y)~j +

2E2
0

c
~k
}
. (8.11)

The transverse part of ~P ,

~PT =
1

2µ0c2

{
∓ E0

ω
∂yE0(x, y)~i± E0

ω
∂xE0(x, y)~j

}
, (8.12)

is responsible for the small circulating component of the flow. It is shown
as the three oriented circles in Fig. 8.3 for a right circular wave and as arrows
circulating in the transverse plane on the surface of the cylinder for a left circular
wave in Fig. 8.4. Note that the region of the circulating flow is limited to the
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the vicinity of r = R where the derivatives ∂x,yE0(x, y) 6= 0. This circular
flow is the source of the nonzero net angular momentum of the finite circularly
polarized cylindrical electromagnetic wave, which we will show now.

P
P

z

0

P

E (r > R) = 0

R

E(r < R) > 0
0

Figure 8.4: The flow of momentum density ~P in the circularly polarized finite
wave bounded to the inside of the cylinder. The vector ~P has now the transverse
component ~PT circulating about the z axis.

The complex angular momentum density is defined by

~j = ~r × ~P , (8.13)

where ~r = (x, y, z) is the vector pointing from the origin to a point (x, y, z) in
space. Compare this last equation with the definition of the angular momentum
~L of a particle with momentum ~p in Eq. 5.1. To find the net complex angular
momentum, we integrate Eq. 8.13 over the volume occupied by the wave

~J =

∫
~r × ~P d3r =

1

µ0c2

∫
~r × ( ~E × ~B) d3r. (8.14)

Using identity (to be derived as Problem 3) ~E× ~B = ~E× (~∇× ~A) = [En~∇An−
( ~E · ~∇) ~A], we get

~J =
1

µ0c2

∫
~r × (En~∇An) d3r − 1

µ0c2

∫
~r × [( ~E · ~∇) ~A] d3r. (8.15)

The second term in Eq. 8.15 can be transformed by integration by parts (Prob-
lem 4) into a more convenient form

~J =
1

µ0c2

∫
~r × (En~∇An) d3r +

1

µ0c2

∫
~E × ~A d3r. (8.16)
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According to Ref. [8], the first term corresponds to the orbital angular momen-

tum ~L because it is independent of the polarization of the wave (left or right).

The orbital momentum ~L is zero for the cylindrically symmetric wave that we
consider. An asymmetric wave or a wave not centered on the origin would give
rise to a nonzero ~L [8].

The second term, as we will see, depends on the polarization of the wave
and therefore corresponds to the spin angular momentum ~S. The time average
value of the spin term is

~S =
1

2µ0c2

∫
Re( ~E × ~A∗) d3r. (8.17)

The integral is performed over the volume inside the cylinder for r < R and
also in the thin region around r = R where E0(r) suddenly drops to zero. Since
the volume of the thin region is small compared to the volume inside, the spin
can be calculated with reasonable accuracy considering only the constant fields
of Eqs. 8.2, 8.3 in the inner region 0 < r < R. The result is (Problem 5)

~S = ∓
~k

µ0c2ω

∫
E2

0 d
3r. (8.18)

The minus (plus) sign corresponds to the right (left) circular wave, respectively.
The energy in the electromagnetic wave is according to the classical theory

given by

E =

∫
ε0 ~E

2 d3r =
ε0
2

∫
Re( ~E · ~E∗) d3r

=
1

2µ0c2

∫
Re( ~E · ~E∗) d3r. (8.19)

After substituting for ~E from Eq. 8.3, we arrive at (Problem 6)

E =
1

µ0c2

∫
E2

0 d
3r. (8.20)

The integral is bounded by r < R but not along the z axis (the height/length
H of the cylinder is so far infinite) which would lead to an infinite energy in
the wave. Since we would like the wave to represent a single photon, we have
to make both R and H finite so that the energy inside the cylinder is equal to
the energy of the single photon,

1

µ0c2

∫
E2

0 d
3r = ~ω. (8.21)

This fixes the integral to ∫
E2

0 d
3r = µ0c

2~ω. (8.22)
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Plugging this expression into Eq. 8.18, we get for the spin

~S = ∓ ~~k. (8.23)

We conclude that the right circularly polarized wave bounded by the cylinder of
radius R and height H with the total energy E = ~ω, carries the spin Sz = −~
and the left circularly polarized wave the spin Sz = +~. These are the two of
the three projections of the spin 1 particle. The third projection, Sz = 0, is
allowed for massive particles only, not for massless photons.

Using only classical theory plus the Einstein’s equation for the energy of the
electromagnetic quantum, E = ~ω, we obtained a picture of a single photon
as a circularly polarized wave of Eq. 8.2, bounded by a cylinder. The energy
and momentum flow mostly along the z axis but there is a small component
of momentum circulating on the surface of the cylinder about the z axis which
generates the spin of the photon.

8.2 Quantization of a standing electromagnetic
wave

In this section we will show the formal equivalence between a free electromag-
netic field and the classical harmonic oscillator. For simplicity we will consider
a one dimensional problem of the electromagnetic field trapped in a box. The
main conclusions are the same as for the three dimensions and for electromag-
netic waves travelling freely without any boundaries. It will turn out that we
can hugely benefit from our analysis of the quantum harmonic oscillator and
simply take over our results for the energy spectrum and the eigenfunctions
from Sec. 4.3.

Let us then consider an optical cavity with two perfectly conducting mirrors
at the opposite ends (Fig. ...). Light inside the cavity forms a standing electro-
magnetic wave when the wave travelling to the right, E0 cos(kz+ωt)~i, interferes
with the wave reflected from the mirror, travelling to the left, −E0 cos(kz−ωt)~i,

~E = E0 cos(kz + ωt)~i− E0 cos(kz − ωt)~i
= −2E0 sinωt sin kz~i. (8.24)

Boundary conditions, ~E(0, t) = ~E(L, t) = 0, impose restrictions on the wavenum-
ber k,

k =
nπ

L
n = 1, 2, 3, ... (8.25)

The positive integer n labels individual modes of the standing wave. The cor-
responding wavelengths and frequencies of the modes are given by

λn =
2L

n
(8.26)

fn =
c

λn
= n

c

2L
, (8.27)
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with n = 1 being the fundamental mode
We will now show how an electromagnetic field consisting of a single mode,

the fundamental one, can be quantized. The electric field is given by Eq. 8.24
with k = π/L,

~E = −2E0 sinωt sin kz~i

= −2E0 q(t) sin kz~i. (8.28)

The time derivative of the magnetic field follows from

∂ ~B

∂t
= −~∇× ~E = 2E0k q(t) cos kz ~j (8.29)

and the magnetic field itself is

~B = 2E0k s(t) cos kz ~j (8.30)

where

ds(t)

dt
≡ ṡ(t) = q(t). (8.31)

If we plug Eqs. 8.28 and 8.30 into another Maxwell equation,

∂ ~E

∂t
= c2 ~∇× ~B, (8.32)

we find that

dq(t)

dt
≡ q̇(t) = −ω2 s(t) (8.33)

where ω = kc. From here we obtain q̇2(t) = ω4 s2(t) and

s2(t) =
q̇2(t)

ω4
. (8.34)

Further, if we take time derivative of Eq. 8.33, we obtain

q̈(t) = −ω2 q(t). (8.35)

This equation has the same form as the classical harmonic oscillator, see Eq.
4.22, for which ω2 = k/m. The generalized coordinate q(t) thus plays the role of
the displacement x(t) of the classical mechanical oscillator from the equilibrium.

We now evaluate energy E (not to be confused with the intensity of the

electric field ~E) in the electromagnetic field in the cavity,

E =

∫ (1

2
ε0 ~E

2 +
1

2µ0

~B2
)
d3r

= S

∫ L

0

(1

2
ε0 ~E

2 +
1

2µ0

~B2
)
dz (8.36)



8.2. QUANTIZATION OF A STANDING ELECTROMAGNETIC WAVE 71

where S is the area of the mirrors. We now substitute for ~E from Eq. 8.28 and
for ~B from Eq. 8.30 and after integrating over z (Problem 7) we have

E = V E2
0

(
ε0q

2(t) +
1

µ0
k2s2(t)

)
(8.37)

with V = SL the volume of the cavity. Next we substitute from Eq. 8.34, put
µ0 = 1/(ε0c

2) and ω = kc,

E = ε0V E
2
0

(
q2(t) +

q̇2(t)

ω2

)
. (8.38)

Finally, we introduce constant M ,

M = 2
ε0V E

2
0

ω2
(8.39)

and the energy can be written as

E =
1

2
Mω2q2(t) +

1

2
Mq̇2(t)

=
1

2
Mω2q2(t) +

1

2M
p2(t) (8.40)

The first (second) term is formally identical with the potential (kinetic) energy
of the classical harmonic oscillator and the generalized momentum p(t) = Mq̇(t),
corresponding to the generalized coordinate q(t), plays the role of momentum
in the classical harmonic oscillator.

Having established that the electromagnetic field is formally equivalent to
the harmonic oscillator, we can quantize it in exactly the same way as we did the
oscillator. We replace the energy E with the Hamiltonian operator Ĥ = Ŵk+Ŵp

and the generalized coordinate q and momentum p with operators q̂ = q and
p̂ = −i~ ∂q, respectively,

Ĥ = Ŵk + Ŵp = − ~2

2M

∂2

∂q2
+

1

2
Mω2q2. (8.41)

This is the Hamiltonian operator of the harmonic oscillator of Eq. 4.32 except
that x is replaced with q. Thus, the results we found for the quantum harmonic
oscillator apply here with the mere replacement x → q. In particular, the
eigenvalues of the Hamiltonian are

En = ~ω(n+
1

2
), n = 0, 1, 2, 3, .... (8.42)

The state of n = 0 is the vacuum state and the n = 1 state represents a single
photon state. In order to visualize this state, we define the operator of the
electric field, based on Eq. 8.28,

~̂E = −2E0 q̂ sin kz~i = −2E0 q sin kz~i. (8.43)
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The wavefunction ψn(E) ≡ ψn(q) is given by Eq. 4.48 and the probability to
measure the electric field E by the square of the wavefunction |ψn(E)|2. Here,

E = 2E00 sin(kz) q for n = 0 (8.44)

E = 2E01 sin(kz) q for n = 1 (8.45)

For the first two states, n = 0 and n = 1, we show the corresponding wavefunc-
tions and probabilities in Fig. 8.5. For the electric field intensity we chose the
length of the cavity L = 1 cm, the volume of the cavity V = 1 cm3 and the
wavelength of the fundamental mode λ = 2 cm.
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Figure 8.5: a) The wavefunction and b) the probability to measure the electric
intensity E in the n = 0 state; c) The wavefunction and d) the probability to
measure the electric intensity E in the n = 1 state.
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