

Budapest University of Technology and Economics High Voltage Laboratory

Measurement of dielectric response as a tool for insulation diagnosis and material characterization

Zoltán Ádám Tamus

Budapest University of Technology and Economics Group of High Voltage Technology and Equipment tamus.adam@vet.bme.hu

Online meeting, 14/04/2021

V4 seminar 2021 spring

THE DIELECTRIC RESPONSE

The dielectric response I.

 Connecting a dielectric to a voltage source, in steady state conditions:

$$D = \varepsilon_0 E + P,$$

$$\sigma_0 = \sigma_e + \sigma_{pol}$$

• The time functions:

$$\sigma_0(t) = \sigma_e(t) + \sigma_{pol}(t)$$
$$D(t) = \varepsilon_0 E(t) + P(t).$$

The dielectric response II.

- Using step-voltage excitation, the polarization exhibits delayed response
- The dielectric response function *f(t)* can be introduced:

$$P(t) = \varepsilon_0 E_0 \delta(t) f(t)$$

• For general excitation: $P(t) = \varepsilon_0 \int_0^\infty f(\tau) E(t-\tau) d\tau$.

• For voltage step:
$$P(t) = \varepsilon_0 E_0 \int_0^t f(\tau) d\tau$$
.

1782

• Physical interpretation $P(\infty) = \varepsilon_0 E_0 \int_0^\infty f(\tau) d\tau = P_0 = \varepsilon_0 \chi E_0$

5

The dielectric response III.

• The dielectric measurements can be modelled by a generalized circuit model

$$I(t) = \gamma E(t) + \frac{dD(t)}{dt} = \gamma E(t) + \frac{\varepsilon_0 dE(t)}{dt} + \frac{dP(t)}{dt}$$

MEASUREMENTS OF DIELECTRIC RESPONSE

Insulation resistance — Time domain

- DC voltage step
- Components of the current
- Dependence on the geometry of the insulation

- Polarisation Index (PI)= $I(t_1)/I(t_2)=R(t_2)/R(t_1)$, $t_1=1$ min, $t_2=10$ min
- Dielectric Absorption Rate $(DAR)=I(t_1)/I(t_2)=R(t_2)/R(t_1)$,
 - $t_1=15 \text{ sec}, t_2=60 \text{ sec or } t_1=30 \text{ sec}, t_2=60$

Tan delta (loss factor) — frequency domain

- Dissipation factor (D): tg $\delta = I_R/I_C$
- Single frequency or D(f) (dielectric response in frequency domain)

The Return Voltage Methods

- The voltage response measurement is based on the measurement of the decay and the return voltage.
- The discharge voltage (V_d(t)) can be measured after the relatively charging period of the insulation.
- The return voltage (V_r(t)) can be measured after the shorting of a charged insulation.

The Decay Voltage

The Return Voltage

Evaluated Parameters

- Peak of return voltage (V_{rmax})
- Slope of decay voltage (S_d)
- Slope of return voltage (S_d)
- S_d: relating to the conductivity
- V_{rmax} and S_r: relating to polarization processes

MÜE

Extended voltage response method

- The extended voltage response measurement is based on the measurement of decay and return voltages.
- The decay voltage can be measured after a long charging time (t_{ch}) of the cable insulation disconnecting the voltage source
- The slopes of return voltages $(S_r(t_{dch1}) \dots S_r(t_{dchn}))$ can be measured on the charged insulation after different shorting times $(t_{dch1}...t_{dchn})^*$ SW1 dielectric The relationship between the results and SW2 Vch V_{ch} the dielectric characteristics can be expressed**: $S_d = \frac{V_{ch}}{dt}\Big|_{t=t_{ch}} = -\frac{i_{pol}(t_{ch})}{C} = -\frac{V_{ch}}{\varepsilon_{\infty}} \Big[\frac{\sigma_0}{\varepsilon_0} + f(t_{ch})\Big]$ $S_r(t_{dch1})$ Sr(t_{dch2}) S_r(t_{dchn}) $S_r = \frac{V_{ch}}{\varepsilon_{co}} \left[f(t_{dch}) - f(t_{dch} + t_{ch}) \right]$ Time (s) t_{dch2} t_{idp} t_{dch1} t_{dchn} *Tamus Z Á, Csábi D and Csányi G M 2015 Journal of Physics: Conference Series 646 012043 **Tamus Z Á, 2019 Journal of Physics: Conference Series (inPress) 1782

VOLTAGE RESPONSE FOR MATERIAL CHARACTERIZATION

Requirements of the measurement

- The capacitance of the equipment has to be lower by two order of magnitude than that of the test object.
- The voltmeter has to be lossless but if the **input impedance** is higher by two order of magnitude than the resistivity of the test object.
- These requirements can be easily satisfied in case of testing high voltage equipment.
- But in case of material samples it is questionable.
- Critical elements
 - Voltmeter
 - SW1
 - SW2

Application of ESVM for return voltage measurement

- Charging by corona discharge
- Neutralization by earthed and slightly alcohol wetted cotton
- Problem:
- Characterization requires accurate charging and discharging times

[10] Molinie P, Goldman M and Gatellet J 1995 Journal of Physics D: Applied Physics 28 1601–1610
[11] Molinie P 2005 IEEE Transactions on Dielectrics and Electrical Insulation 12 939–950 ISSN 1070-9878
[12] Molini e P 2018 Proceedings of the 2018 Electrostatics Joint Conference

17

The electrostatic voltage follower

Non-contact electrostatic voltmeter

Bartnikas R, McMahon E 1987 Engineering Dielectrics Volume IIB, Electrical Properties of Solid Insulating Materials: Measurement Techniques ASTM STP 926 Noras M A 2002 Trek application note

The arrangement

- Impedance of commercial switches around 10¹⁵⁻¹⁶ Ω
- This result in high leakage current for material test.
- The voltage follower is used for bootstrapping

	SW1	SW2	SW3
Charging	ON	OFF	ON
Discharging	OFF	ON	ON
Measurement	OFF	OFF	OFF

Test measurements

- Slope of decay voltages:
 - No Guard: -59.211 V/s
 - Guard: -31.803
- The slopes of return voltages are higher after longer discharging times
- Due to the polarization of polymeric insulation parts of the electrode arrangement

🔺 No Guard 🛛 💻 Guard

DIELECTRIC MODELING BASED ON EVR RESULTS

Determination of the equivalent circuit

• The slope of return voltage of *R*-*C* branches:

Slope of return voltage in case of *n R-C* branches and given charging and discharging times:

$$S_r(t_{ch}, t_{dchn}) = V_{ch} \sum_{i=1}^{l} \frac{\left(1 - e^{\frac{-t_{ch}}{\tau_{pi}}}\right) e^{\frac{-t_{dchn}}{\tau_{pi}}}}{\tau_{ri}}$$

Spectrum-like solution — I.

- Solutions finding in the 0,1...10000 s time constant range
- 10 polarisations in each decade
- Uniform distribution by $\lg(\tau)$
- Changing the intensity of every single processes, the $(S_r(t_{dch1})...S_r(t_{dchn}))$ result vector of EVR measurement can be found.
- Least Square Method

23

Spectrum-like solution—II.

- LV PVC insulated power cable
- After accelerated thermal ageing (110°C, 900 h)

Before ageing

Nanodielectric samples — I.

- Samples:
 - Pure resin
 - 1 w% MgO nanoparticles (MgO)
 - 1 w% MgO nanoparticle, surfaceGLYMO (MgO+GLYMO)
- Main properties (ZCU measurments)*

Sample	$\tan \delta$	ε_r	ρ	E_{bd}
Pure resin	0.0033	2.95	$6.28 imes 10^{12}$	37 kV/mm
Resin + MgO	0.0041	3.43	$5.01 imes 10^{13}$	42.3 kV/mm
Resin + MgO + GLYMO	0.0036	3.15	7.14×10^{14}	43.1 kV/mm

Sample	$S_d[V/s]$	$S_r[V/s]$
Pure resin	5.26	27.69
Resin + MgO	3.20	16.48
Resin + MgO + GLYMO	2.25	15.33

*Hornak, J., Trnka, P., Kadlec, P., Michal, O., Mentlík, V., Sutta, P.,... Tamus, Z.A., 2018, Nanomaterials, 8(6).

HIGHVOI TAGE

LABORATORY

MÜEGYETEM

1782

Nanodielectric samples — II.

- EVR measurements
- Finding the minimal Debye elemets

- Intesity of slow polarisation processes decreases
- The distributin shifths towards high time constants
- Decreasing mobility of charge carriers
 - Nanoparticles* **
 - Surface modification***

25

AN INTERPRETATION OF FREQUENCY-DOMAIN MEASUREMENT

Finding diagnostic markers

- The best diagnostic marker has to follow the ageing of the equipment linearly
- The searching of diagnostic markers are based on accelerated ageing tests
- But the data provided by these tests are not reliable in many cases

LABORATORY

Dissipation factor – Thermal aged EPR cable samples

- Shifting of curves with ageing can be observed
- "Shifting" cannot be applied for evaluation of ageing
- The centroids of the curves were calculated to characterize the "shifting":

🛶 0 h 🔸 1950 h 🛶 2600 h 🔸 4019 h 🛶 4761 h 🛶 5319 h 🛶 5844 h 🛶 6508 h

The position of centroids

- The centroids fit on a straight line (R²=0.9661)
- Therefore both f_C and DF_C values can be used to track ageing
- The point of 5844 h aging time is an outlier data, it is not involved to the analysis

4/14/21

The central frequency (f_c) as a function of ageing time

- Good correlation with ageing (R²=0.9964)
- This parameter is a good marker for ageing
- More ageing markers have been developed*

*Csányi, G.M.; Bal, S.; Tamus, Z.Á. Dielectric Measurement Based Deducted Quantities to Track Repetitive, Short-Term Thermal Aging of Polyvinyl Chloride (PVC) Cable Insulation. *Polymers* **2020**, *12*, 2809. https://doi.org/10.3390/polym12122809

HIGHVOLTAGE

LABORATORY

CONCLUSIONS

Conclusions

- The dielectric response can be measured time- and frequencydomain by the current measurement
- The return voltage technique has been improved
 - Using several discharging and measurements the dielectric response function can be measured
 - The results can be used for dielectric modeling
 - Using electrostatic voltmeter the material samples can be investigated
- Frequency-domain measurements provide a spectrum of a dielectric parameter
- It is difficult to interpret them for condition monitoring
- Deducted quantities can help for easier analysis

Thank you for your attention!

TAMIUS, Zoltán Ádám Hungary, Budapest H-1111, Egry József u. 18. Tel.: +36 30 320 8332 E-mail: <u>tamus.adam@vet.bme.hu</u>

