
Lie Groups: A Primer for a Particle Physicist
M. Gintner

1 Basics on Lie Groups

Intuitively, the n-parameteric Lie group G is an infinite group with elements that are continuously
parameterizable by n real parameters ~α = (α1, . . . , αn) in at least a finite neighbourhood of a unit
element e ∈ G. In the neighbourhood the parameterization of g(~α) ∈ G can be chosen in such a
way that

g(~0) = e. (1)

The group composition law is defined by n functions (f1, . . . , fn) ≡ ~f so that

g(~α)g(~β) = g(~f(~α, ~β)). (2)

The functions fa(~α, ~β) are required to be expandable to the Taylor series in ~α = ~β = ~0. We expect
the composition function ~f to fulfill the following conditions

~f(~0,~0) = ~0, (3)
~f(~α,~0) = ~α, ~f(~0, ~β) = ~β, (4)

which are equivalent to the identities ee = e, g(~α)e = g(~α), and eg(~β) = g(~β), respectively. In
addition, it seems natural to require

~f(~α, ~α) = 2~α, (5)

which means that g(~α)g(~α) = g(2~α).
Let us expand the function ~f in the Taylor series at ~α = ~β = ~0

fa(~α, ~β) = fa(~0,~0) +
∂fa
∂αb

∣∣∣∣∣
(0,0)

· αb +
∂fa
∂βb

∣∣∣∣∣
(0,0)

· βb

+
1
2!

∂2fa
∂αb∂αc

∣∣∣∣∣
(0,0)

· αbαc +
∂2fa
∂αb∂βc

∣∣∣∣∣
(0,0)︸ ︷︷ ︸

Cabc

·αbβc +
1
2!

∂2fa
∂βb∂βc

∣∣∣∣∣
(0,0)

· βbβc + . . . , (6)

where the dots indicate higher-order terms. Taking into account eqs. (3) and (4) we obtain

∂fa
∂αb

∣∣∣∣∣
(0,0)

= 1,
∂nfa

∂αb1 . . . ∂αbn

∣∣∣∣∣
(0,0)

= 0, ∀n > 1, (7)

∂fa
∂βb

∣∣∣∣∣
(0,0)

= 1,
∂nfa

∂βb1 . . . ∂βbn

∣∣∣∣∣
(0,0)

= 0, ∀n > 1. (8)

Then the Taylor expansion of fa(~α, ~β) reads

fa(~α, ~β) = αa + βa + Cabcαbβc + . . . (mixed terms of higher order) . . . , (9)
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where
Cabc = −Cacb, (10)

due to (5). All this means that g(~α)g(~β) = g(~α + ~β + mixed terms of higher order).
Let us express an element g(~ε) ∈ G infinitesimally close to the unit element in the following

form
g(~ε) = e+ iεaJa, εa → 0. (11)

where Ja’s (a = 1, . . . , n) are called the generators1 of the group and the factor “i” in the linear
term is a matter of convention. Without a proof we assume that the objects Ja with appropriate
qualities do exist and thus it makes sense to write down the expression (11). By composing
any two infinitesimal elements g(~ε1), g(~ε2) ∈ G we get an infinitesimal element of G again. Since
g(~ε1)g(~ε2) = e+i(~ε1a+~ε2a)Ja any linear combination of Ja’s with infinitesimal coefficients generates
an infinitesimal element of G. The generators Ja can be taken as a basis of an n-dimensional real
vector space. Rephrasing the previous statement, any infinitesimal vector of the vector space
generates an infinitesimal element of G. It also implies that the choice of the generators, and
consequently the parameterization, of a given group is not unique. We are free to choose as
generators any basis of the vector space.

Repeating the infinitesimal transformation (11) N -times while substituting εa = αa/N where
N is an integer we obtain

g(~α) =
(
I + i

αa
N
Ja

)N
=

N∑

k=0


 N

k



(
i
αa
N
Ja

)N−k

= I + iαaJa +
1
2!
N(N − 1)

N2
(iαaJa)

2 +
1
3!
N(N − 1)(N − 2)

N3
(iαaJa)

3 + . . . , (12)

where the Binomial theorem has been used. The transformation g(~α) may become finite if we
aggregate an infinite number of the infinitesimal transformations

g(~α) = lim
N→∞

(
I + i

αa
N
Ja

)N
= I + iαaJa +

1
2!

(iαaJa)
2 +

1
3!

(iαaJa)
3 + . . . ≡ exp(iαaJa), (13)

where we have introduced the “exp” shorthand just to make life easier. Using the expansion (13)
we can write

g(~α)g(~β) = e+ i(αa + βa)Ja − 1
2!

(αaαb + 2αaβb + βaβb)JaJb +O(3), (14)

where O(3) denotes terms proportional to αpaβ
r
b with p + r ≥ 3. As expected, it generally differs

from g(~α + ~β) for which we get

g(~α + ~β) = e+ i(αa + βa)Ja − 1
2!

(αaαb + αaβb + βaαb + βaβb)JaJb +O(3). (15)

Note that (αaβb + βaαb)JaJb = 2αaβbJaJb − αaβb[Ja, Jb].
1The generators can be formally understood as the first derivatives of the group elements at ~α = ~0

iJa =
∂g

∂αa

∣∣∣∣
0

.
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The local structure of a Lie group is tested when we compose the succession of four infinitesimal
group elements g(~ε1)g(~ε2)g−1(~ε1)g−1(~ε2). Obviously, if the elements commute the result is the unit
element. In general however

g(~ε1)g(~ε2)g−1(~ε1)g−1(~ε2) = e− ε1aε2b[Ja, Jb]. (16)

The higher-order terms were neglected. So the local structure of any given Lie group is encoded in
the value of the commutators of the group’s generators. The role of the commutator gets confirmed
by means of the Baker-Campbell-Hausdorff relation which we state here without a proof

eAeB = exp{A+B +
1
2!

[A,B] +
1
3!

(
1
2

[[A,B], B] +
1
2

[A, [A,B]]) + . . .}, (17)

where A and B are finite vectors of the vector space of generators. Thus even the result of the
composition of finite elements of a Lie group depends on the commutators [Ja, Jb] whenever the
finite elements are expressible in terms of the infinite expansion (13) at the unit element.

As we will demonstrate below all commutators [Ja, Jb] can be expressed as linear combinations
of the generators Ja. As a consequence the vector space of generators Ja is closed with respect to
the commutators. Thus the vector space of generators forms an algebra. The Taylor expansion of
a group element is

g(~α) = e+ iαaJa +
1
2!
αaαbJab + . . . , (18)

where the object Jab = Jba have been introduced, formally equal to (∂2g/∂αa∂αb)0, and the dots
indicate higher-order terms. The equation (18) implies

g(~α)g(~β) = e+ i(αa + βa)Ja − αaβbJaJb +
1
2!

(αaαb + βaβb)Jab +O(3). (19)

At the same time, using (9) in (18), we get

g(~f(~α, ~β)) = e+ i(αa + βa)Ja + iCabcαbβcJa +
1
2!

(αaαb + 2αaβb + βaβb)Jab +O(3). (20)

Comparing (19) and (20) we get
Jab = −JaJb − iCcabJc. (21)

The symmetry of Jab leads to
[Ja, Jb] = ifabcJc, (22)

where the objects
fabc ≡ Ccba − Ccab = 2Ccba = −fbac (23)

are called the group structure constants. The eq. (21) rewritten in terms of fabc is

Jab = −JaJb +
i

2
fabcJc. (24)

The eq. (22) is the sought-after confirmation that the commutator of group generators can be
expressed as a linear combination of the very same generators thus closing the vector space of the
generators. Now, using (24) we can rewrite the Taylor expansion (18) of R(~α) in the following
way

R(~α) = I + iαaJa +
1
2!

(iαaJa)
2 +O(α3), (25)
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This coincides with the power expansion of R(~α) obtained in (13).
At the end we will derive a useful identity for the group structure constants. Applying the

Jacobi identity, [[A,B], C] + [[B,C], A] + [[C,A], B] = 0, to the generators Ja and considering (22)
we get 0 = [[Ja, Jb], Jc] + [[Jb, Jc], Ja] + [[Jc, Ja], Jb] = −(fabdfdce + fbcdfdae + fcadfdbe)Je. leading to

fabdfdce + fbcdfdae + fcadfdbe = 0. (26)

2 The O(3) and SO(3) Groups

Rotations in the 3-dim Euclidean space E(3) are represented by 3× 3 real regular matrices R

x→ x′ = R(~α)x, x, x′ ∈ E(3). (27)

The rotations are to maintain the norm |x| = (xTgx)1/2 — g being the metric tensor — of the
vector x

|x′| = |x|. (28)

In the Euclidean space the metric is given by g = I. The condition (28) applied to (27) leads to
the orthogonality of matrices R

RTR = I. (29)

This implies detR = ±1.
The matrices for which the eq. (29) holds comprise the so-called O(3) group. This restriction

leads to a larger class of matrices than just those representing the rotations. In particular, the
space reflection RP = −I also fulfils the eq. (29) thus maintaining the length of a vector. Note
that detRP = −1.

If the condition
detR = 1, (30)

in addition to (29) is introduced the R matrices form the so-called SO(3) group. Its elements
correspond to 3-dim rotations only. They are continuously connected to the unit element R(~0) = I
and can be expressed in an exponential form. An infinitesimal rotation has a form2

R(~ε) = I + iΩ(~ε), (31)

where iΩ is a real 3-dim matrix. When (31) is plugged into the eq. (29) we get

(iΩ)T = −(iΩ). (32)

It means that iΩ is an antisymmetric matrix and has three independent parameters. All 3 × 3
antisymmetric matrices comprise a 3-dim real vector space. Therefore they can be expressed in a
basis of three independent antisymmetric matrices iJa. A simple choice is

(iJa)bc = εabc, a, b, c = 1, 2, 3. (33)

The finite rotation can be written as

R(~α) = exp(iαaJa), (34)

2Factor i in front of Ω is a matter of convention. When introduced group generators become hermitian.
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where matrices R are the fundamental representation of the SO(3) group. The generators Ja are
hermitian matrices with zeros on the main diagonal and imaginary numbers elsewhere. Their
algebra is defined by

[Ja, Jb] = iεabcJc (35)

which can be verified using the explicit form (33).
Matrices for finite 3-dim rotations by an angle φ around individual cartesian axes possess the

following form

Rx =




1 0 0

0 cφ sφ

0 −sφ cφ


 , Ry =



cφ 0 −sφ
0 1 0

sφ 0 cφ


 , Rz =




cφ sφ 0

−sφ cφ 0

0 0 1


 , (36)

where sφ = sinφ and cφ = cosφ.
The tensor representations of SO(3) can be build by means of multiple direct products of the

fundamental (vector) representation. The tensor repesentations act on tensors. For example, a
rank-2 tensor T transforms as a direct product of two vectors

T ′ = (R⊗R)T = RTRT . (37)

There is a rank-2 tensor invariant under SO(3) transformations. It is a 3-dim unit matrix I(3) =
diag(1, 1, 1). Its invariance is a direct consequence of the first group definition relation (29) which
can be rewritten in the form

RI(3)RT = I(3). (38)

The second group definition relation (30) implies the existence of a rank-3 invariant tensor: the 3-
dim Levi-Civita tensor ε(3). The component form of the equation detR = 1 reads R1iR2jR3kεijk =
1. Since R1iR1jRnkεijk = R2iR2jRnkεijk = R3iR3jRnkεijk = 0 we get R`iRmjRnkεijk = ε`mn which
in compact form reads

(R⊗R⊗R)ε(3) = ε(3). (39)

3 The SU(2) Group

The SU(2) denotes a group of 2× 2 complex matrices U complying with

U †U = I, (40)

detU = 1. (41)

The U matrix can be expressed in an exponential form

U(~α) = exp(iΩ(~α)) = 1 + iΩ(~α) +O(α2). (42)

Substituting an infinitesimal U into (40) we obtain

Ω† = Ω. (43)

In addition, the condition (41) leads to Tr Ω = 0. Thus Ω is a Hermitian 2×2 complex matrix of a
zero trace. The matrix of this sort has three independent real parameters and can be expressed in
a basis of three independent Hermitian 2×2 complex matrices of a zero trace. The Pauli matrices
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σ1, σ2, σ3 would serve as the basis quite well. However, the usual choice of the SU(2) generators
is τi = σi/2. Their algebra is given by

[τa, τb] = iεabcτc, (44)

which is identical to (35). Apparently, the SU(2) generators obey the same algebra as the gen-
erators of the SO(3) group. We can write the exponential parameterization of the SU(2) group
as

U(~α) = exp(i~α~τ), ~τ = ~σ/2 (45)

where ~α = (α1, α2, α3) are real parameters. The identical algebras of SU(2) and SO(3) imply a
local isomorphism of the groups in a vicinity of their unit elements.

The U matrices transform vectors of a 2-dim complex vector space

ξ → Uξ, ξ =


 ξ1

ξ2


 . (46)

At the same time matrices3 Ū ≡ U∗ = (U †)T also comprise a representation of the SU(2) group

χ̄→ Ū χ̄, χ̄ =


 χ̄1

χ̄2


 . (47)

We say that ξ transform under the covariant representation and χ̄ under the contravariant one.
Using vectors of both representations we can construct an invariant of the SU(2) transformations

χ̄T ξ = χ̄iξi → χ̄TU †Uξ = χ̄T ξ. (48)

In fact, the covariant and contravariant representations of SU(2) are equivalent, i.e. there is a
2× 2 regular matrix ε such that

Ū = ε−1Uε = ε̄Uε. (49)

where we have defined ε̄ ≡ ε−1. Then (49) implies that ε̄ξ transforms as ξ̄ and εχ̄ transforms as χ

(ε̄ξ′) = (ε̄Uε)(ε̄ξ) = Ū(ε̄ξ), (50)

(εχ̄′) = (εŪ ε̄)(εχ̄) = U(εχ̄). (51)

Considering (45) we can identify the matrix ε of (49) as

ε = iσ2 = ε(2) =


 0 1

−1 0


 , ε̄ = −iσ2 = −ε = εT . (52)

Indeed, since ε̄σaε = −(σa)∗, a = 1, 2, 3, we get

Ū(~α) = ε̄ exp(i~α~τ)ε = exp(−i~α~τ ∗) = U∗(~α). (53)

The Eq. (52) implies that

ε̄ξ =


 −ξ2

ξ1


 , εξ̄ =


 ξ∗2
−ξ∗1


 . (54)

3The bar over U denotes a representation distinct from U . The asterisk means the complex conjugation of U .
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We can build the so-called tensor representations of SU(2) through the direct products of the
covariant as well as contravariant representations. An important example is a rank-2 tensor T
which transforms as the direct product of covariant and contravariant vectors

ξ ⊗ χ̄ =


 ξ1

ξ2


 (χ̄1, χ̄2) =


 ξ1χ̄1 ξ1χ̄2

ξ2χ̄1 ξ2χ̄2


 ≡ ξχ̄T , (55)

or (ξ ⊗ χ̄)ij = ξiχ̄j. The SU(2) transformation of the direct product is

ξiχ̄j = (ξχ̄T )ij → UikξkŪj`χ̄` = Uikξkχ̄`U
†
`j = (Uξ)i(χ̄

TU †)j = (Uξχ̄TU †)ij, (56)

or
ξ ⊗ χ̄→ U(ξ ⊗ χ̄)U †. (57)

Since T transforms as the direct product, T ∼ ξ ⊗ χ̄, then

T → UTU †. (58)

Let us denote the representation transforming the tensor T as (1, 1); the notation indicates the
number of covariant and contravariant components in the direct product transformation equiva-
lent.

The (1, 1) representation is not irreducible. Since T has four independent complex components
it belongs to a 4-dim complex vector space V (4) closed under SU(2) transformations. However,
the vector space has subspaces which themselves are closed under these transformations. First of
all, following (58) we find that

Tr(T ′) = Tr(UTU †) = Tr(T ) (59)

which is compatible with (48) since Tr(ξ ⊗ χ̄) = (ξ ⊗ χ̄)ijδij = ξiχ̄jδij = χ̄T ξ. Thus the trace of
T forms a one-dimensional invariant subspace V (1) ⊂ V (4). The remaining part of the V (4) space
is populated with traceless4 tensors T − I(2)/2 · Tr(T ). Let us mention that the transformation
relation (58) along with (41) also leads to invariance of detT

detT ′ = det(UTU †) = detT. (60)

In addition, the transformation (58) maintains hermiticity as well as antihermiticity of the tensors

T † = ±T ⇒ (T ′)† = (UTU †)† = ±T ′. (61)

Note that each matrix M can be written as a sum of hermitian and antihermitian matrices.
Indeed, if we define H ≡ (M + M †)/2 and A ≡ (M −M †)/2 then H† = H and A† = −A while
M = H + A.

There was the homomorphism between the groups SO(3) and SU(2) mentioned above. To
demonstrate it let us consider a traceless hermitian tensor H transforming under (1, 1) represen-
tation of SU(2)

H(x) ≡ xaσa =


 x3 x1 − ix2

x1 + ix2 −x3


 , (62)

4‘Traceless’ means that the trace of the tensor is equal to zero.
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where

σ1 =


 0 1

1 0


 , σ2 =


 0 −i
i 0


 , σ3 =


 1 0

0 −1


 (63)

are the Pauli matrices. The determinant of H is

detH = −xaxa = −|x|2. (64)

Let U be an SU(2) matrix transforming H(x) to

H(x′) = UH(x)U †, (65)

where H(x′) = x′aσa and H(x) = xaσa. Because of (60) the SU(2) transformations of H maintain
the quantity |x|. This suggests a correspondence between SU(2) and SO(3) transformations.
Since the SU(2) transformation conserves |x| there must be a matrix R of SO(3) transforming
the Euclidean vector x = (x1, x2, x3) to the vector x′ = Rx = (x′1, x

′
2, x
′
3). Thus

U(xaσa)U
† = (Rx)aσa = Rabxbσa

Comparing factors at the corresponding coordinates we obtain

UσaU
† = Rbaσb. (66)

This relation provides an explicit mapping between the elements of the group SU(2) and SO(3).
The mapping is a 2-1 homomorphism5: ±U → R. The eq. (66) also demonstrates that while the
individual Pauli matrices transform as the (1, 1) representation of the group SU(2) the triplet of
the Pauli matrices form an SO(3) vector. It means that the index a on σa is an SO(3) vector
index.

4 The SU(2)⊗ SU(2) group

Let us introduce L,R indices to distinguish the SU(2) components of the SU(2)⊗ SU(2) group.
Then SU(2)L ⊗ SU(2)R is a group of the doublets (gL, gR) where gL,R ∈ SU(2)L,R. The doublets
follow the composition law

(g1, h1)(g2, h2) = (g1g2, h1h2). (67)

The six generators JL,Ra (a = 1, 2, 3) of the group can be chosen to obey the following commutation
relations

[JL,Ra , JL,Rb ] = iεabcJ
L,R
c , [JLa , J

R
b ] = 0. (68)

The very obvious choice of matrices JL,Ra fulfilling the commutation relations (68) is the 4-dim
matrices

JRa =
1
2


 σa 0

0 0


 , JLa =

1
2


 0 0

0 σa


 . (69)

5Note that detU = 1 ⇒ det(−U) = 1.
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They can be expressed as the direct product6 of the Pauli matrices and the projection matrices
PR,L = (I(2) ± σ3)/2

JR,La =
1
2
σa ⊗ PR,L. (70)

The exponential form of this 4-dim representation reads

U(αR, αL) = exp[i(αRa J
R
a + αLb J

L
b )] = exp(iαRa J

R
a ) exp(iαLb J

L
b ) = UR(αR)UL(αL), (71)

where matrices UR and UL commute. Explicitly

UR(αR) =


 exp(iαRa σa/2) 0

0 I(2)


 , UL(αL) =


 I(2) 0

0 exp(iαLaσa/2)


 . (72)

This representation transforms 4-dim complex vector ξ. The vector has two 2-dim parts, ξr and
ξ`, each transforming as a SU(2) spinor

ξ =


 ξr

ξ`


 → Uξ =


 Urξr

U`ξ`


 , Ur,` = exp(iαR,La σa/2). (73)

Thus there are two 2-dim subspaces — the “left” one and the “right” one — not communicating
with each other when experiencing SU(2)L⊗SU(2)R transformations. The 2-dim matrices Ur and
U` represent the SU(2)L ⊗ SU(2)R group in the right and left invariant subspaces, respectively.

We can built tensor representations of SU(2)L ⊗ SU(2)R as direct products of Ur and U`
matrices. In addition, we have learnt in Section 3 that besides the covariant representations Ur,`
there are also the contravariant representations Ūr,`. Hence, for example, a tensor which transforms
as the direct product of the left and right spinors, ξ` ⊗ χ̄r, is transformed by U` ⊗ Ūr which can
be written as

T → U`TU
†
r , T =


 a b

c d


 , (74)

where a, b, c, d are complex numbers. The tensor T belongs to a 4-dim complex vector space. The
trace of T †T

Tr(T †T ) = |a|2 + |b|2 + |c|2 + |d|2 (75)

is an SU(2)L ⊗ SU(2)R invariant object

Tr(T †T )→ Tr(URT
†U †LULTU

†
R) = Tr(T †T ). (76)

The U`⊗Ūr representation is reducible. There is an SU(2)L⊗SU(2)R invariant 2-dim subspace
of the vector space of T ’s made up of matrices

M =


 d∗ b

−b∗ d


 = (Φ̃,Φ) =


 ΥT

Υ̃T


 , (77)

6Throughout the notes we use the convention A ⊗ B =

(
AB11 AB12

AB21 AB22

)
for the direct product of matrices.

If A ⊗ B =

(
A11B A12B

A21B A22B

)
were used then the order of the product factors in (70), and elsewhere, would get

reversed.
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where b, d are complex numbers, and

Φ ≡

 b

d


 , Φ̃ ≡


 d∗

−b∗

 = εΦ∗, Υ ≡


 d∗

b


 , Υ̃ ≡


 −b∗

d


 = ε̄Υ∗. (78)

The tilded vectors transform in the same way as untilded ones: so if Φ → U`Φ then Φ̃ → U`Φ̃,
and, if Υ → ŪrΥ then Υ̃ → ŪrΥ̃. Thus both, U` as well as Ūr, save the structure (77) of the
matrix M

M = (Φ̃,Φ)→ U`M = (U`Φ̃, U`Φ) = (Φ̃′,Φ′), (79)

where Φ̃′ = εΦ′∗, and

M =


 ΥT

Υ̃T


→MU †r =


 (ŪrΥ)T

(ŪrΥ̃)T


 =


 Υ′T

Υ̃′T


 , (80)

where Υ̃′ = ε̄Υ′∗.
There is a homomorphism between SU(2)L ⊗ SU(2)R and SO(4). It can be seen if M is

parameterized in the following way

b =
1√
2

(x2 + ix1), d =
1√
2

(x4 − ix3), (81)

where xi are real numbers. Then

M =
1√
2


 x4 + ix3 x2 + ix1

−x2 + ix1 x4 − ix3


 =

1√
2

(I(2)x4 + ixaσa), (82)

where a = 1, 2, 3. Using (75) we obtain

Tr(M †M) = 2(|b|2 + |d|2) = xaxa, (83)

where a = 1, 2, 3, 4. Due to (76) the object xaxa is SU(2)L⊗SU(2)R invariant. The same object is
invariant under SO(4) transformations if xa’s are components of an SO(4) vector (x1, x2, x3, x4)T ≡
xT . For each SU(2)L ⊗ SU(2)R transformation M(x′) = ULM(x)U †R there is an SO(4) rotation
x′ = Rx. Note that the (−UL,−ŪR) transformation induces the same SO(4) rotation as (UL, ŪR).

We introduce another basis of the SU(2)L ⊗ SU(2)R algebra defining matrices

Ja = JRa + JLa , Ka = JRa − JLa . (84)

Their commutators are

[Ja, Jb] = iεabcJc, [Ka, Kb] = iεabcJc, [Ja, Kb] = iεabcKc. (85)

From (69) we get explicit form of the generators Ja, Ka

Ja =
1
2


 σa 0

0 σa


 =

1
2
σa ⊗ I(2), Ka =

1
2


 σa 0

0 −σa


 =

1
2
σa ⊗ σ3. (86)

The group elements generated by Ja’s form an SU(2) subgroup of SU(2)L⊗SU(2)R. The subgroup
has a couple of names: vector, diagonal; usually it is denoted as SU(2)V or SU(2)L+R.
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The G = SU(2)L ⊗ SU(2)R group contains several subgroups. They are listed in the table
below. There, a general element g ∈ G is parameterized as g(~αL, ~αR) = exp[i(αLaJ

L
a + αRb J

R
b )],

a, b = 1, 2, 3.

subgroup H g(~αL, ~αR) note

SU(2)L ~αR = 0

SU(2)R ~αL = 0

SU(2)V ~αL = ~αR

U(1)L3 ~αL = (0, 0, αL), ~αR = 0 i) also gHg−1, g ∈ G
ii) ⊂ SU(2)L

U(1)R3 ~αL = 0, ~αR = (0, 0, αR) i) also gHg−1, g ∈ G
ii) ⊂ SU(2)R

U(1)L3 ⊗ U(1)R3 ~αL = (0, 0, αL), ~αR = (0, 0, αR) also

g1(U(1)L3)g−1
1 ⊗ g2(U(1)R3)g−1

2 ,

g1, g2 ∈ G
U(1)V 3 ~αL = (0, 0, α), ~αR = (0, 0, α) i) also gHg−1, g ∈ SU(2)V

ii) ⊂ SU(2)V
iii) ⊂ U(1)L3 ⊗ U(1)R3

U(1)A3 ~αL = (0, 0,−β), ~αR = (0, 0, β) i) also gHg−1, g ∈ SU(2)V
ii) ⊂ U(1)L3 ⊗ U(1)R3

U(1)V 3 ⊗ U(1)A3 ~αL = (0, 0, α− β), ~αR = (0, 0, α + β) = U(1)L3 ⊗ U(1)R3

(87)

The set of elements g(~αL, ~αR) ∈ G where ~αL = −~αR is usually denoted as SU(2)A. It does not
comprise a group, even though SU(2)L ⊗ SU(2)R = SU(2)A ⊗ SU(2)V . The direct product on
the r.h.s. means that any g ∈ G can be decomposed in the form g = ξh where ξ ∈ SU(2)A,
h ∈ SU(2)V .

5 The SO(4) group

SO(4) is a group of 4-dim real orthogonal matrices R with detR = 1. The orthogonality condition
is connected to the invariance of the length of the 4-dim real vector in the Euclidean space:
xTx = (Rx)T (Rx) is equvivalent to RTR = I. Thus SO(4) is represented by the rotations in a
4-dim Euclidean space.

When the infinitesimal form R = I + iΩ is plugged into the orthogonality condition it yields
(iΩ)T = −iΩ. Hence Ω is a real antisymmetric 4× 4 matrix. The matrix is parameterizable with
6 real numbers. Thus SO(4) group has 6 generators7 Jab = −Jba, (a, b = 1, 2, 3, 4) which must
fulfill JTab = −Jab. They can be chosen as

(Jab)cd = −i(δacδbd − δadδbc). (88)

As can be verified by an explicit calculation the algebra of the generators is given by8

[Jab, Jcd] = i(δacJbd − δadJbc + δbdJac − δbcJad). (89)

7The pair of indices on Jab serves to denote individual generators. It does not indicate an element of a matrix!
8Note that the SO(3) algebra (35) can be obtained from (89) when we put a, b, c = 1, 2, 3, and Jab = εabcJc,

which amounts to the substitution J12 → J3, J23 → J1, and J31 → J2.
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Eventually, we can write down R in the exponential form

R(~ω) = exp(iωabJab), (90)

where ωab = −ωba are six real parameters parameterizing the group SO(4).
Let us rename the Jab generators in the following way

Ja ≡ 1
2
εabcJbc, Ka ≡ Ja4, a, b, c = 1, 2, 3, (91)

resulting in J1 = J23, J2 = J31, J3 = J12, K1 = J14, K2 = J24, and K3 = J34. Note that Jab = εabcJc
for a, b, c = 1, 2, 3. When we substitute (88) into (91) we obtain (a, b, c = 1, 2, 3; j, k = 1, 2, 3, 4)

(Ja)jk =
1
2
εabc(Jbc)jk =




−iεajk, j, k = 1, 2, 3

0, j ∨ k = 4
(92)

The explicit form of the generators Ja, Ka reads

J1 =




0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0



, J2 =




0 0 i 0

0 0 0 0

−i 0 0 0

0 0 0 0



, J3 =




0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0



, (93)

K1 =




0 0 0 −i
0 0 0 0

0 0 0 0

i 0 0 0



, K2 =




0 0 0 0

0 0 0 −i
0 0 0 0

0 i 0 0



, K3 =




0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0



. (94)

We can verify that J1, J2, J3, K1, K2, K3 generate rotations in the (2, 3)-, (1, 3)-, (1, 2)-, (1, 4)-,
(2, 4)-, (3, 4)- planes, respectively. For example, the infinitesimal transformation R = I + iαJ1

transforms coordinates of a vector x = (x1, x2, x3, x4) as follows

x′1 = x1, x′2 = x2 + αx3, x′3 = x3 − αx2, x′4 = x4. (95)

This is obviously an infinitesimal rotation in the (2, 3)-plane, because

(x′2)2 + (x′3)2 = (x2 + αx3)2 + (x3 − αx2)2 = (x2)2 + (x3)2

up to the O(α2). The infinitesimal transformation R = I + iαK1 leads to

x′1 = x1 + βx4, x′2 = x2, x′3 = x3, x′4 = x4 − βx1. (96)

It represents an infinitesimal rotation in the (1, 4)-plane, since (x′1)2+(x′4)2 = (x1)2+(x4)2+O(β2).
The commutators of Ja’s and Ka’s can be derived from (89)

[Ja, Jb] = iεabcJc, [Ka, Kb] = iεabcJc, [Ja, Kb] = iεabcKc. (97)

We introduce yet another six new generators following the pattern (Jab ± εabcdJcd)/2

J±1 =
1
2

(J23 ± J14), J±2 =
1
2

(J31 ± J24), J±3 =
1
2

(J12 ± J34). (98)
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The generators fulfill the following commutation relations

[J±a , J
±
b ] = iεabcJ

±
c , [J+

a , J
−
b ] = 0. (99)

The J±a generators in the fundamental representation can be derived from (88) and expressed in
terms of the direct product of the Pauli matrices and the 2-dim unit matrix

J+
1 =

1
2

(σ1 ⊗ σ2), J+
2 = −1

2
(σ3 ⊗ σ2), J+

3 =
1
2

(σ2 ⊗ I(2)), (100)

J−1 = −1
2

(σ2 ⊗ σ1), J−2 = −1
2

(I(2) ⊗ σ2), J−3 =
1
2

(σ2 ⊗ σ3). (101)

The commutators (99) imply that the group SO(4) is locally isomorphic to the group SO(3) ⊗
SO(3). However, recalling that SO(3) is locally isomorphic to SU(2) we conclude that SO(4) is
also locally isomorphic to SU(2)⊗ SU(2).

The relation between the generators Ja, Ka and J±a is

J±a =
1
2

(Ja ±Ka) (102)

and inversely
Ja = J+

a + J−a , Ka = J+
a − J−a . (103)

In the fundamental representation, combining (100), (101), and (103), we get

J1 =
1
2

(σ1 ⊗ σ2 − σ2 ⊗ σ1), J2 = −PR ⊗ σ2, J3 = σ2 ⊗ PR, (104)

K1 =
1
2

(σ1 ⊗ σ2 + σ2 ⊗ σ1), K2 = PL ⊗ σ2, K3 = σ2 ⊗ PL, (105)

where P (2)
R,L = (I(2) ± σ3)/2 are projection matrices in a 2-dim vector space.

6 The spinor representation of SO(4)

If we consider the commutation relations (89) as the defining property of the SO(4) group then
besides the vector and tensor representations considered in Section 5 we can construct the so-called
spinor representation of the group. Let us introduce four 4-dim matrices Γ1, . . . ,Γ4 for which the
following anticommutation relation holds

{Γa,Γb} = 2δabI(4). (106)

The vector space of the gamma-matrices with the “product” (106) is called the Clifford algebra.
The gamma-matrices can be used to build the generators of the SO(4) spinor representation in
the following way

Σab = − i
4

[Γa,Γb], (107)

It can be verified that the Σ’s satisfy the SO(4) algebra (89)

[Σab,Σcd] = i(δacΣbd − δadΣbc + δbdΣac − δbcΣad). (108)
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The spinor representation is four-dimensional. It transforms complex vectors called spinors

ξ → Sξ, S = exp(iαabΣab). (109)

If the gamma-matrices are (anti)hermitian the generators Σ’s are hermitians with zero trace. Then
the transformation (109) is unitary, S†S = I. In particular, when the gamma-matrices are real
and (anti)symmetric, the matrices iΣab are real and antisymmetric. In this case S is orthogonal,
STS = I. Real spinor representations are called Majorana’s.

The spinor representation of SO(4) is reducible. To demonstrate it let us define the fifth
gamma-matrix

Γ5 ≡ ±Γ1Γ2Γ3Γ4, (110)

where the choice of the sign is arbitrary and does not affect any conclusions below. First of all,
Γ5 anticommutes with all original gamma-matrices

{Γ5,Γa} = 0, a = 1, . . . , 4. (111)

Secondly9,
Γ2

5 = I(4). (112)

We can define

PR,L =
1
2

(I(4) ± Γ5) (113)

which are projection matrices because

PR + PL = I(4), P 2
R,L = PR,L, PRPL = 0. (114)

Let us list here some useful identities

PR − PL = Γ5, PR,LΓa = ΓaPL,R, PR,LΓ5 = ±PR,L, (115)

[PR,L,Γa] = ±Γ5Γa, [PR,L,Γ5] = 0. (116)

The projection matrices split the spinor space into two distinct subspaces: the “right” spinors ξR
and the “left” spinors ξL

ξR,L ≡ PR,Lξ, ξR + ξL = ξ. (117)

The first equation of (116) implies that the projection matrices PR,L commute with all SO(4)
generators and thus with all SO(4) transformations

[PR,L,Σab] = 0 ⇒ [PR,L, S] = 0. (118)

Then
SξR,L = SPR,Lξ = PR,LSξ = PR,Lξ

′ = ξ′R,L. (119)

It means that the right and left subspaces are invariant under SO(4) transformations.
The right and left spinors are eigenvectors of Γ5 with eigenvalues ±1

Γ5ξR,L = Γ5PR,Lξ = ±PR,Lξ = ±ξR,L. (120)

9Note that all matrices of the set Γ1, . . . ,Γ5 fulfill the anticommutation relation (106). As a matter of fact these
are generators of the SO(5) spinor representation which is four-dimensional.
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The representation in which Γ5 is diagonal is called chiral. In this representation the eigenvalues
of Γ5 are spread along its main diagonal. Thus

Γ5 =


 I(nR) 0

0 −I(nL)


 , nR + nL = 4, (121)

where we have grouped together the eigenvalues +1 and the eigenvalues −1. In this representation
spinors have a form

ξ =


 ξr

ξ`


 , ξR =


 ξr

0


 , ξL =


 0

ξ`


 , (122)

where ξr,` are called Weyl spinors. The left and right subspaces are both two-dimensional, nR =
nL = 2. To prove it note that the eq. (106) implies Tr(Γ1Γ2Γ3Γ4) = −Tr(Γ4Γ1Γ2Γ3). At the same
time, due to general properties of the trace, Tr(Γ1Γ2Γ3Γ4) = Tr(Γ4Γ1Γ2Γ3) holds. This results in
Tr(Γ5) = 0. Since Tr(Γ5) = nR − nL we get nR = nL. Since nR + nL = 4 we obtain nR = nL = 2.
Thus Γ5 can be chosen in the following way

Γ5 =


 I(2) 0

0 −I(2)


 = I(2) ⊗ σ3. (123)

The projection matrices in the chiral representation assume forms

PR,L =
1
2

(I(4) ± I(2) ⊗ σ3) =
1
2
I(2) ⊗ (I(2) ± σ3) =





diag(I(2), 0)

diag(0, I(2))
. (124)

There is also the complex conjugated spinor representation S̄ of SO(4)

χ̄→ S̄χ̄, S̄ = S∗ = exp(−iαabΣ∗ab). (125)

In the case S̄ is a unitary10 representation it is identical to the contragradient representation
(S−1)T

S∗ = (eiαabΣab)∗ = e−iαab(Σab)
T

= (S−1)T . (126)

As in Section 5 we can introduce the following set of generators

Ja ≡ 1
2
εabcΣbc, Ka ≡ Σa4, a, b, c = 1, 2, 3 (127)

with the commutators

[Ja, Jb] = iεabcJc, [Ka, Kb] = iεabcJc, [Ja, Kb] = iεabcKc. (128)

And also the set
J±a ≡ (Ja ±Ka) (129)

with the commutators
[J±a , J

±
b ] = iεabcJ

±
c , [J+

a , J
−
b ] = 0. (130)

10All representations of finite groups as well as all finite-dimensional representations of connected simple compact
infinite groups are equivalent to a unitary representation.
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The choice of the Γ-matrices satisfying the eq. (106) is not unique. If S is a regular 4-dim matrix
then Γ′a = SΓaS−1 also satisfies the anticommutation relation. A convenient way to construct the
gamma-matrices is through the direct product of the Pauli matrices and a 2-dim unit matrix. An
example is

Γa = σa ⊗ σ1 =


 0 σa

σa 0


 , Γ4 = I(2) ⊗ σ2 =


 0 −iI(2)

iI(2) 0


 , a = 1, 2, 3. (131)

It results in a diagonal Γ5 matrix

Γ5 = ±Γ1Γ2Γ3Γ4 = ±(−I(2) ⊗ σ3) = ±

 −I(2) 0

0 I(2)


 , (132)

which indicates that we deal with the chiral representation. The lower sign definition corresponds
to the construction (123). The Σ-generators are

Σab = − i
4

[Γa,Γb] =
1
2
εabc(σc ⊗ I(2)) =

1
2
εabc


 σc 0

0 σc


 , a, b, c = 1, 2, 3, (133)

Σa4 = − i
4

[Γa,Γ4] =
1
2
σa ⊗ σ3 =

1
2


 σa 0

0 −σa


 , a = 1, 2, 3. (134)

In the usual way they can be renamed as J ’s and K’s

Ja =
1
2
εabcΣbc =

1
2

(σa ⊗ I(2)) =
1
2


 σa 0

0 σa


 , (135)

Ka = Σa4 =
1
2
σa ⊗ σ3 =

1
2


 σa 0

0 −σa


 , (136)

where a, b, c = 1, 2, 3. Consequently,

J+
a = (Ja +Ka) =


 σa 0

0 0


 , J−a = (Ja −Ka) =


 0 0

0 σa


 , (137)

where a = 1, 2, 3.
In the case of the chiral representation a more compact notation can be introduced. Let us

define
σa ≡ (σ1, σ2, σ3,−iI(2)), σ̄a ≡ (σ1, σ2, σ3, iI(2)), (138)

and

σab ≡ − i4(σaσ̄b − σbσ̄a), σ̄ab ≡ − i4(σ̄aσb − σ̄bσa). (139)

Then

Γa =


 0 σa

σ̄a 0


 , Σab =


 σab 0

0 σ̄ab


 , (140)

where a, b = 1, 2, 3, 4.
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Suitable gamma-matrices can be obtained when σ1 and σ2 at the second position of the direct
products in (131) are replaced by any pair of (mutually different) Pauli matrices. For example,

Γa = σa ⊗ σ2 =


 0 −iσa
iσa 0


 , Γ4 = I(2) ⊗ σ3 =


 iI(2) 0

0 −iI(2)


 , a = 1, 2, 3. (141)

It results in

Γ5 = ±Γ1Γ2Γ3Γ4 = ±(−I(2) ⊗ σ1) = ±

 0 −I(2)

−I(2) 0


 . (142)

The Σ-generators are

Σab = − i
4

[Γa,Γb] =
1
2
εabc(σc ⊗ I(2)) =

1
2
εabc


 σc 0

0 σc


 , a, b, c = 1, 2, 3, (143)

Σa4 = − i
4

[Γa,Γ4] =
1
2
σa ⊗ σ1 =

1
2


 0 σa

σa 0


 , a = 1, 2, 3. (144)

The J ’s and K’s are

Ja =
1
2
εabcΣbc =

1
2

(σa ⊗ I(2)) =
1
2


 σa 0

0 σa


 , (145)

Ka = Σa4 =
1
2
σa ⊗ σ1 =

1
2


 0 σa

σa 0


 , (146)

where a, b, c = 1, 2, 3. Consequently,

J+
a = (Ja +Ka) =

1
2


 σa σa

σa σa


 , J−a = (Ja −Ka) =

1
2


 σa −σa
−σa σa


 , (147)

where a = 1, 2, 3.

7 The SO(1, 3) group and the Lorentz transformations

The Minkowski space is a 4-dim vector space with the pseudometric11 given by the metric tensor

g ≡ diag(1,−1,−1,−1). (148)

Note that the inverse matrix of g is the matrix g itself, g−1 = g. Reflecting the pattern of the
main diagonal of g we will denote the Minkowski space as V (1,3). The squared “length” of a vector
x ∈ V (1,3) is given as a pseudoscalar product of x with itself

x2 ≡ xTgx = xigijxj. (149)

It can be seen easily that x2 of a non-trivial x is not positively definite as it would have been
in an Euclidean space. It can assume zero or negative values as well. There is a convention

11The “metric” defined by the tensor (148) does not fulfill all the metric axioms. Namely, the requirement of the
positivity of the norm of a vector.
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that the index of Minkowski four-vector components runs over values 0, 1, 2, 3. Thus g00 = 1,
g11 = g22 = g33 = −1.

The Lorentz transformations (LT) of x ∈ V (1,3) maintain x2. In this sense they can be under-
stood as a Minkowski space analogue of rotations. Let Λ be a 4-dim real matrix representing LT
of a four-vector x

x→ x′ = Λx. (150)

Then
x′2 = x′Tgx′ = xT (ΛTgΛ)x. (151)

From x′2 = x2 we obtain the condition for Λ

ΛTgΛ = g. (152)

It is analogous to the orthogonality condition (29). It can be verified that LT’s comprise a Lie
group. Let us denote it as O(1, 3).

The prototype of the Minkowski space is a space of four-vectors x = (x0, x1, x2, x3)T = (ct, ~x)T

where t is a time coordinate, c is a speed of light, and ~x = (x1, x2, x3) is a position vector
expressed in Cartesian coordinates. It is called the spacetime. The quantity invariant under LT
in the spacetime is called the interval s where

s2 ≡ x2 = (ct)2 − ~x2. (153)

If s2 > 0 the four-vector x is called time-like, if s2 < 0 the four-vector is space-like, and, finally,
for s2 = 0 it is called light-like.

The eq. (152) implies
det Λ = ±1, (154)

and12

|Λ00| ≥ 1. (155)

The LT’s with det Λ = 1 are called proper and denoted Λ+. The product of two proper LT’s is
a proper LT. The identity transformation is a proper one. There is an inverse transformation to
each proper LT and it is also a proper transformation. The Lorentz transformations Λ− with the
determinant equal to −1 are said to be improper. The LT’s where Λ00 ≥ 1 are called ortochronous
and denoted as Λ↑. The product of two ortochronous transformations is an ortochronous one. It
includes the identity transformation. When Λ00 ≤ −1 the LT’s are said to be non-ortochronous
and denoted Λ↓.

The LT’s of the form

Λ =


 1 0

0 R


 , RTR = I, detR = 1, (156)

where R is a 3 × 3 real matrix represent rotations in a 3-dim Euclidean space. Not suprisingly
they comprise an O(3) subgroup of the Lorentz group O(1, 3). In this case det Λ = 1 and Λ00 = 1.
Thus the rotations qualify for the proper ortochronous LT’s.

12The 00-component of the eq. (152) reads Λ2
00 −

∑3
i=1 Λ2

i0 = 1. Since Λ’s are real matrices the equation results
in (155).
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Boosts between two inertial frames also belong to the proper ortochronous LT’s. For example,
the boost along the 1-direction is given by the matrix

Λ =




cosh η − sinh η 0 0

− sinh η cosh η 0 0

0 0 1 0

0 0 0 1



, cosh η = γ ≡ 1√

1− β2
, sinh η = βγ, β ≡ v

c
, (157)

where v is a relative velocity of the frames, v < c, and −∞ < η < ∞. Since det Λ = cosh2 η −
sinh2 η = 1 and Λ00 = cosh η ≥ 1 the 1-boost is a proper and ortochronous LT. However, pure
boosts do not comprise a group.

The proper ortochronous LT’s Λ↑+ comprise the so-called SO(1, 3) subgroup of the O(1, 3)
group. Any Λ↑+ transformation can be written as a product of a space rotation and a Lorentz
boost. Generally, when a physical theory is said to be Lorentz invariant, the invariance under the
proper ortochronous LT’s is meant.

The squared spacetime interval s2 also remains invariant under various spacetime inversions.
Thus they also qualify for LT’s. For example, the space inversion is represented by the matrix

Λ = diag(1,−1,−1,−1) = g ≡ ΛP . (158)

Since det Λ = −1 and Λ00 = 1 it is an improper ortochronous LT. The time inversion is represented
by the matrix

Λ = diag(−1, 1, 1, 1) ≡ ΛT . (159)

Since det Λ = −1 and Λ00 = −1 it is an improper non-ortochronous LT. Finally, the full inversion

Λ = diag(−1,−1,−1,−1) = ΛPΛT (160)

is a proper non-ortochronous LT: det Λ = 1 and Λ00 = −1. Any LT can be decomposed as the
product of Λ↑+, ΛP , and ΛT . The claim is based on the fact that the four classes of LT’s, Λ↑+, Λ↑−,
Λ↓+, Λ↓−, cover all LT’s, and on the observation that

Λ↑−ΛP , Λ↓−ΛT , Λ↓+ΛPΛT ∈ {Λ↑+}. (161)

Since all the inversion matrices are identical to their inverse matrices, Λ2
P,T,PT = I, then for every

Λ there is Λ↑+ such that Λ = Λ↑+ΛP,T,PT .
The proper ortochronous Lorentz transformations13 can be expressed in the exponential form.

When we plug an infinitesimal LT, Λ = I + iΩ, into the condition (152) we get

(iΩ)T = −g(iΩ)g, (162)

where we took into account g−1 = g. To find out what kind of matrix Ω fits the condition (162)
we can rewrite it as

[g(iΩ)]T = −g(iΩ). (163)

This is exactly the condition the generators of the SO(4) group have to fulfill. Thus g(iΩ) is
a real antisymmetric 4 × 4 matrix. As in the SO(4) case it has 6 independent real parameters.

13Henceforth, unless specified otherwise, the proper ortochronous LT’s will be refered to as the Lorentz transfor-
mations.
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Consequently, the Lorentz group SO(1, 3) also has six generators. Following (88) the SO(1, 3)
generators Jab = −Jba (a, b = 0, 1, 2, 3) can be chosen to comprise with the relation

(gJab)cd = −i(δacδbd − δadδbc), (164)

or
(Jab)cd = −i(gacδbd − δadgbc). (165)

Obviously, the commutation relation (89) must hold for (gJab) matrices. From there, or by explicit
calculation, we can verify that

[Jab, Jcd] = i(gacJbd − gadJbc + gbdJac − gbcJad). (166)

Then the exponential form of the LT is

Λ(~ω) = exp(iωabJab), a, b = 0, 1, 2, 3, (167)

where ωab = −ωba are six real parameters.
Let us define a new set of SO(1, 3) generators14

Ja ≡ −1
2
εabcJbc, Ka ≡ Ja0, a, b, c = 1, 2, 3, (168)

resulting in J1 = −J23, J2 = −J31, J3 = −J12, K1 = J10, K2 = J20, and K3 = J30. The
inverse relation to the definition of Ja reads Jab = −εabcJc. We can see that (168) is, up to
the sign, more like renaming the generators Jab. When we substitute (165) into (168) we obtain
(a, b, c = 1, 2, 3; j, k = 0, 1, 2, 3)

(Ja)jk = −1
2
εabc(Jbc)jk =




−iεajk, j, k = 1, 2, 3

0, j ∨ k = 0
(169)

Then the explicit form of the generators Ja, Ka reads

J1 =




0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0



, J2 =




0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0



, J3 =




0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0



, (170)

K1 =




0 i 0 0

i 0 0 0

0 0 0 0

0 0 0 0



, K2 =




0 0 i 0

0 0 0 0

i 0 0 0

0 0 0 0



, K3 =




0 0 0 i

0 0 0 0

0 0 0 0

i 0 0 0



. (171)

The matrices J1, J2, J3 generate 3-dim rotations around the axes 1, 2, 3, respectively. The matrices
K1, K2, K3 generate boosts along the axes 1, 2, 3, respectively. For example, the infinitesimal
transformation Λ = I + iϕJ1 transforms the four-vector x = (x0, x1, x2, x3) as follows

x′0 = x0, x′1 = x1, x′2 = x2 + ϕx3, x′3 = x3 − ϕx2, (172)

14The choice Ja ≡ − 1
2εabcJbc, Ka ≡ −Ja0 would work as well.
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This is obviously an infinitesimal rotation in the (2, 3)-plane, because

(x′2)2 + (x′3)2 = (x2 + ϕx3)2 + (x3 − ϕx2)2 = (x2)2 + (x3)2

up to the O(ϕ2). The infinitesimal transformation Λ = I + iηK1 leads to

x′0 = x0 − ηx1, x′1 = x1 − ηx0, x′2 = x2, x′3 = x3. (173)

This is an infinitesimal boost, since

(x′0)2 − (x′1)2 = (x0 − ηx1)2 − (x1 − ηx0)2 = (x′0)2 − (x′1)2 +O(η2).

The commutation relations for the generators Ja, Ka can be obtained from (166)

[Ja, Jb] = iεabcJc, [Ka, Kb] = −iεabcJc, [Ja, Kb] = iεabcKc. (174)

Note that these commutation relations differ from the algebra (97) of SO(4) only in the commu-
tator [Ka, Kb].

It is instructive to compare the Ja’s and Ka’s of SO(1, 3) — see eqs. (170), (171) — to Ja’s and
Ka’s of SO(4) — see eqs. (93), (94). While all the SO(4) generators are hermitian matrices, Ka’s
of SO(1, 3) are not hermitian. Thus the representation of the SO(1, 3) group is not unitary. This
happens due to non-compactness15 of the SO(1, 3) group which materializes through unbounded
values of the group parameter η in (157). In contrast, possible values of all group parameters
of SO(4) fall within closed intervals. The SO(4) group is compact and it has a finite unitary
representations.

Let us define yet another set of SO(1, 3) generators

J±a ≡
1
2

(Ja ± iKa), a = 1, 2, 3, (175)

which implies

Ja = J+
a + J−a , Ka =

1
i
(J+
a − J−a ). (176)

The commutation relations for J±a are

[J±a , J
±
b ] = iεabcJ

±
c , [J+

a , J
−
b ] = 0. (177)

This exactly coincides with the eq. (99). It implies that the SO(1, 3) group is locally isomorphic
to the SO(4) group as well as to the SO(3)⊗SO(3) group, and thus to the SU(2)⊗SU(2) group.

15Unitary representations of non-compact groups are infinite-dimensional.
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