Truth of a Hypothesis: The χ^2 Test

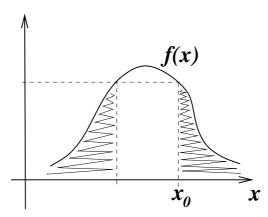
M. Gintner

1 The single observable case

x ... a random observable

f(x) ... p.d.f.

 x_0 ... the measured value of x



Def:

$$x$$
 is worse than $x_0 \Leftrightarrow f(x) < f(x_0)$

Backing of x_0 for the hypothesis f(x):

support of x_0 for f(x) = probability of obtaining any value worse than x_0

$$B(x_0; f) = \int_{f(x) < f(x_0)} f(x) \, dx \tag{1}$$

Symmetric p.d.f.:

let f(x) have a peak at x = Xlet $f(X - \Delta x) = f(X + \Delta x), \forall \Delta x$ then

$$B(x_0; f) = 2 \int_{x_0}^{\infty} f(x) \, dx \tag{2}$$

note that

$$x$$
 is worse than $x_0 \Leftrightarrow |x - X| > |x_0 - X|$

Gaussian p.d.f.:

let f(x) be a Gaussian, the peak at $X = \mu$,

$$f(x) = \frac{1}{(2\pi)^{1/2}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
 (3)

the backing:

$$B(x_0; \mu, \sigma) = \frac{2}{(2\pi)^{1/2}\sigma} \int_{x_0}^{\infty} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] dx = \sqrt{\frac{2}{\pi}} \int_{\chi_0}^{\infty} e^{-\chi^2/2} d\chi,$$

where $\chi \equiv (x - \mu)/\sigma > 0$, $\chi_0 \equiv (x_0 - \mu)/\sigma > 0$; let $z \equiv \chi^2$

$$B(x_0; \mu, \sigma) = \frac{1}{\sqrt{2\pi}} \int_{\chi_0^2}^{\infty} \frac{e^{-z/2}}{\sqrt{z}} dz = \int_{\chi_0^2}^{\infty} p_{\chi^2}(z) dz$$
 (4)

the backing of x_0 is equal to the probability that $z>\chi_0^2$ for z distributed as $p_{\chi^2}(z)$

Def of χ^2 -distribution function (a single observable case):

$$p_{\chi^2}(z) = \frac{1}{\sqrt{2\pi}} \frac{e^{-z/2}}{\sqrt{z}} \tag{5}$$

2 The n observables case

$$\vec{X} = \{x^{(1)}, x^{(2)}, \dots, x^{(n)}\}$$
 ... independent random observables
$$\vec{f} = \{f^{(1)}(x^{(1)}), f^{(2)}(x^{(2)}), \dots, f^{(n)}(x^{(n)})\}$$
 ... p.d.f.'s
$$\vec{X}_0 = \{x_0^{(1)}, x_0^{(2)}, \dots, x_0^{(n)}\}$$
 ... measured values of \vec{X}

Def:

$$\vec{X}$$
 is worse than \vec{X}_0 \Leftrightarrow
$$\underbrace{\prod_{k=1}^n f^{(k)}(x^{(k)})}_{F(\vec{X})} < \underbrace{\prod_{k=1}^n f^{(k)}(x_0^{(k)})}_{F(\vec{X}_0)}$$

Backing of \vec{X}_0 for the hypothesis \vec{f} :

support of \vec{X}_0 for \vec{f} = probability of obtaining \vec{X} worse than \vec{X}_0

$$B(\vec{X}_0; \vec{f}) = \underbrace{\int \dots \int_{F(\vec{X}) < F(\vec{X}_0)}^{n-times} F(\vec{X}) \underbrace{dx^{(1)} \dots x^{(n)}}_{d\vec{X}}}$$
(6)

Gaussian distributed random observables $x^{(1)} \dots x^{(n)}$:

$$f^{(k)}(x) = \frac{1}{(2\pi)^{1/2}\sigma_k} \exp\left[-\frac{(x-\mu_k)^2}{2\sigma_k^2}\right], \quad k = 1, \dots, n$$
 (7)

then

$$F(\vec{X}) = \frac{1}{(2\pi)^{n/2} \prod_{k=1}^{n} \sigma_k} \exp\left[-\frac{\chi^2(\vec{X})}{2}\right]$$
 (8)

where

$$\chi(\vec{X}) \equiv \sqrt{\sum_{k=1}^{n} \frac{(x^{(k)} - \mu_k)^2}{\sigma_k^2}} \tag{9}$$

the backing of \vec{X}_0 for \vec{f} (which is essentially the backing for the given set of μ_k 's and σ_k 's):

$$B(\vec{X}_0; \vec{f}) = \overbrace{\int \dots \int_{\chi^2 > \chi_0^2}}^{n-times} F(\vec{X}) \ d\vec{X} = \frac{1}{(2\pi)^{n/2}} \overbrace{\int \dots \int_{\chi^2 > \chi_0^2}}^{n-times} \exp(-\chi^2(\vec{\kappa})/2) \ d\vec{\kappa},$$

where $\chi_0 = \chi(\vec{X}_0)$, $\kappa^{(k)} = (x^{(k)} - \mu_k)/\sigma_k$, and $\chi^2 = (\kappa^{(1)})^2 + \ldots + (\kappa^{(n)})^2$. Since the integrand depends on χ^2 only it is useful to switch to the *n*-dim spherical coordinates. All integration but the one with respect to χ is trivial. Thus using

$$d\vec{\kappa} = \frac{n\pi^{n/2}}{\Gamma(\frac{n}{2}+1)} \chi^{n-1} d\chi \tag{10}$$

and considering $\Gamma(\frac{n}{2}+1) = \frac{n}{2}\Gamma(\frac{n}{2})$ we get

$$B(\vec{X}_0; \vec{f}) = \frac{1}{2^{n/2 - 1} \Gamma(\frac{n}{2})} \int_{\chi_0}^{\infty} \exp(-\chi^2/2) \, \chi^{n-1} \, d\chi \tag{11}$$

let $\chi = \sqrt{z}$:

$$B(\vec{X}_0; \vec{f}) = \frac{1}{2^{n/2} \Gamma(\frac{n}{2})} \int_{\chi_0^2}^{\infty} e^{-z/2} z^{n/2-1} dz = \int_{\chi_0^2}^{\infty} p_{\chi^2}^{(n)}(z) dz.$$
 (12)

the backing of \vec{X}_0 is equal to the probability that $z > \chi_0^2$ for z distributed as $p_{\chi^2}^{(n)}(z)$

Def of χ^2 **-distribution function** (an *n* observables case):

$$p_{\chi^2}^{(n)}(z) = \frac{e^{-z/2} z^{n/2-1}}{2^{n/2} \Gamma(\frac{n}{2})}$$
 (13)

3 The Best Fit

$$\vec{X} = \{x^{(1)}, x^{(2)}, \dots, x^{(n)}\}\$$

$$f(x; \mu_k, \sigma_k), k = 1, \dots, n$$

$$\vec{X}_0 = \{x_0^{(1)}, x_0^{(2)}, \dots, x_0^{(n)}\}\$$

... independent Gaussian distributed random observables ... Gaussian p.d.f.'s ... measured values of \vec{X}

 $\{\sigma_1,\ldots,\sigma_n\}$... the errors of measurements they should better be the errors on theoretical predictions but the common practice is to use the errors of measurements

see [L.Lyons: Statistics for Nuclear and Particle Physicists, p.102 on]

let the observables \vec{X} be functions of some parameters $\vec{p} = \{p_1, \dots, p_m\}, m < n$ then

$$\mu_1 = \mu_1(\vec{p}), \ldots, \mu_n = \mu_n(\vec{p})$$

Which \vec{p} is the best supported one by the measurement \vec{X}_0 ? Obviously, the one that minimizes

$$\chi^{2}(\vec{p}) = \sum_{k=1}^{n} \frac{\left[x_{0}^{(k)} - \mu_{k}(\vec{p})\right]^{2}}{\sigma_{k}^{2}}$$
(14)

because it has the greatest backing!

Note, that in this situation there is only n-m d.o.f.!

Thus the backing is given by (n-m)-dim χ^2 -distribution $p_{\chi^2}^{(n-m)}(z)$.

EXAMPLE:

measurements and errors:

$$x_0^{(1)} = 6 \pm 1$$

 $x_0^{(2)} = 11 \pm 2$

dependency on parameters:

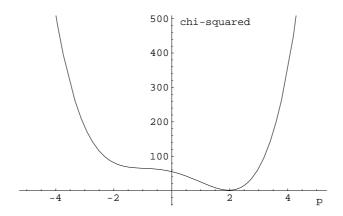
$$\mu_1(p) = 1 + 2p$$

 $\mu_2(p) = 3p^2$

the value of χ^2 parameterized by p:

$$\chi^{2}(p) = \frac{\left[x_{0}^{(1)} - \mu_{1}(p)\right]^{2}}{\sigma_{1}^{2}} + \frac{\left[x_{0}^{(2)} - \mu_{2}(p)\right]^{2}}{\sigma_{2}^{2}} = (5 - 2p)^{2} + \frac{1}{4}(11 - 3p^{2})^{2}$$

4



searching for the minimum of $\chi^2(p)$:

$$\frac{d\chi^2(p)}{dp} = 9p^3 - 25p - 20 = 0$$

the numerical solution:

$$p_0 = 1.97552$$

this is the value of p for which the theoretical predictions for observables,

$$\mu_1(p_0) = 4.95104, \quad \mu_2(p_0) = 11.708,$$

have the greatest support from measured data $\vec{X}_0 = \{6, 11\}$

the backing:

d.o.f. =
$$2 - 1 = 1$$

 $\chi_0^2 = \chi^2(p_0) = 1.22565$

the Chi Square Calculator (http://www.stat.sc.edu/~west/applets/chisqdemo.html):

$$B(\underbrace{\{6,11\}}_{\vec{X}_0};\underbrace{4.95104\pm 1}_{\mu_1\pm\sigma_1},\underbrace{11.708\pm 2}_{\mu_2\pm\sigma_2})=15.98\%$$

summary table:

observable	measured	fitted	$ \text{measured} - \text{fitted} /\sigma$	
$x^{(1)}$	6 ± 1	4.95104	1.04896	(15)
$x^{(2)}$	11 ± 2	11.708	0.354019	